Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Mabuchi metric and the Kähler-Ricci flow


Author: Donovan McFeron
Journal: Proc. Amer. Math. Soc. 142 (2014), 1005-1012
MSC (2010): Primary 53C44
DOI: https://doi.org/10.1090/S0002-9939-2013-11856-3
Published electronically: December 23, 2013
MathSciNet review: 3148534
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that on a Fano manifold the convergence of the Kähler-Ricci flow to a Kähler-Einstein metric follows from the integrability of the $ L^2$ norm of the Ricci potential for positive time.


References [Enhancements On Off] (What's this?)

  • [1] Shigetoshi Bando, The $ K$-energy map, almost Einstein Kähler metrics and an inequality of the Miyaoka-Yau type, Tohoku Math. J. (2) 39 (1987), no. 2, 231-235. MR 887939 (88k:53092), https://doi.org/10.2748/tmj/1178228326
  • [2] B. Clarke and Y.A. Rubinstein,
    Ricci flow and the metric completion of the space of Kähler metrics,
    preprint, arXiv:1102.3787v1.
  • [3] Xiaodong Cao and Qi S. Zhang, The conjugate heat equation and ancient solutions of the Ricci flow, Adv. Math. 228 (2011), no. 5, 2891-2919. MR 2838064 (2012k:53127), https://doi.org/10.1016/j.aim.2011.07.022
  • [4] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239 (90e:35123)
  • [5] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. MR 664497 (84a:53050)
  • [6] Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227-252. MR 909015 (88m:53126)
  • [7] G. Perelman.
    The entropy formula for the Ricci flow and its geometric applications,
    preprint, arXiv:math/0211159v1.
  • [8] D. H. Phong, Jian Song, Jacob Sturm, and Ben Weinkove, The Kähler-Ricci flow and the $ \overline {\partial }$ operator on vector fields, J. Differential Geom. 81 (2009), no. 3, 631-647. MR 2487603 (2010b:32035)
  • [9] Duong H. Phong and Jacob Sturm, On stability and the convergence of the Kähler-Ricci flow, J. Differential Geom. 72 (2006), no. 1, 149-168. MR 2215459 (2007a:53128)
  • [10] Natasa Sesum and Gang Tian, Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman), J. Inst. Math. Jussieu 7 (2008), no. 3, 575-587. MR 2427424 (2009c:53092), https://doi.org/10.1017/S1474748008000133
  • [11] Gábor Székelyhidi, The Kähler-Ricci flow and $ K$-polystability, Amer. J. Math. 132 (2010), no. 4, 1077-1090. MR 2663648 (2011g:32034), https://doi.org/10.1353/ajm.0.0128
  • [12] Gang Tian and Xiaohua Zhu, Convergence of Kähler-Ricci flow, J. Amer. Math. Soc. 20 (2007), no. 3, 675-699. MR 2291916 (2007k:53107), https://doi.org/10.1090/S0894-0347-06-00552-2
  • [13] Valentino Tosatti, Kähler-Ricci flow on stable Fano manifolds, J. Reine Angew. Math. 640 (2010), 67-84. MR 2629688 (2011e:32030), https://doi.org/10.1515/CRELLE.2010.019
  • [14] R. Ye,
    The logarithmic Sobolev inequality along the Ricci flow,
    preprint, arXiv:0707.2424v4.
  • [15] Qi S. Zhang, A uniform Sobolev inequality under Ricci flow, Int. Math. Res. Not. IMRN 17 (2007), Art. ID rnm056, 17. MR 2354801 (2008g:53083), https://doi.org/10.1093/imrn/rnm056

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C44

Retrieve articles in all journals with MSC (2010): 53C44


Additional Information

Donovan McFeron
Affiliation: School of Theoretical and Applied Science, Ramapo College of New Jersey, Mahwah, New Jersey 07430
Email: dmcferon@ramapo.edu

DOI: https://doi.org/10.1090/S0002-9939-2013-11856-3
Received by editor(s): April 24, 2012
Published electronically: December 23, 2013
Communicated by: Lei Ni
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society