Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

Foliations on non-metrisable manifolds: Absorption by a Cantor black hole


Authors: Mathieu Baillif, Alexandre Gabard and David Gauld
Journal: Proc. Amer. Math. Soc. 142 (2014), 1057-1069
MSC (2010): Primary 57N99, 57R30, 37E35
Published electronically: December 17, 2013
MathSciNet review: 3148539
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate contrasting behaviours emerging when studying foliations on non-metrisable manifolds.


References [Enhancements On Off] (What's this?)

  • [1] Mathieu Baillif, Satya Deo, and David Gauld, The mapping class group of powers of the long ray and other non-metrisable spaces, Topology Appl. 157 (2010), no. 8, 1314–1324. MR 2610441, 10.1016/j.topol.2009.07.018
  • [2] M. Baillif, A. Gabard, and D. Gauld, Foliations on non-metrisable manifolds: absorption by a Cantor black hole, arXiv (2009).
  • [3] Edmund Ben Ami and Matatyahu Rubin, On the reconstruction problem for factorizable homeomorphism groups and foliated manifolds, Topology Appl. 157 (2010), no. 9, 1664–1679. MR 2639833, 10.1016/j.topol.2010.03.006
  • [4] André Haefliger, Sur les feuilletages des variétés de dimension 𝑛 par des feuilles fermées de dimension 𝑛-1, Colloque de topologie de Strasbourg, 1954–1955, Institut de Mathématique, Université de Strasbourg., no year given, pp. 8 (French). MR 0088730
  • [5] André Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 367–397 (French). MR 0189060
  • [6] André Haefliger and Georges Reeb, Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseignement Math. (2) 3 (1957), 107–125 (French). MR 0089412
  • [7] Gilbert Hector and Ulrich Hirsch, Introduction to the geometry of foliations. Part A, Aspects of Mathematics, vol. 1, Friedr. Vieweg & Sohn, Braunschweig, 1981. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomy. MR 639738
  • [8] Wilfred Kaplan, Regular curve-families filling the plane, I, Duke Math. J. 7 (1940), 154–185. MR 0004116
  • [9] H. Kneser, Kurvenscharen auf geschlossenen Flächen, Jahresb. d. Deutsch. Math.-Verein. 30 (1921), 83-85.
  • [10] Hellmuth Kneser, Reguläre Kurvenscharen auf den Ringflächen, Math. Ann. 91 (1924), no. 1-2, 135–154 (German). MR 1512185, 10.1007/BF01498385
  • [11] Hellmuth Kneser, Abzählbarkeit und geblätterte Mannigfaltigkeiten, Arch. Math. (Basel) 13 (1962), 508–511 (German). MR 0161256
  • [12] Hellmuth Kneser and Martin Kneser, Reel-analytische Strukturen der Alexandroff-Halbgeraden und der Alexandroff-Halbgeraden und der Alexandroff-Geraden, Arch. Math. (Basel) 11 (1960), 104–106 (German). MR 0113228
  • [13] Martin Kneser, Beispiel einer dimensionserhöhenden analytischen Abbildung zwischen überabzählbaren Mannigfaltigkeiten, Arch. Math. (Basel) 11 (1960), 280–281 (German). MR 0161257
  • [14] J. Milnor, Foliations and foliated vector bundles, Notes from lectures given at MIT, Fall 1969. File located at http://www.foliations.org/surveys/FoliationLectNotes_Milnor.pdf
  • [15] Peter J. Nyikos, The topological structure of the tangent and cotangent bundles on the long line, The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979), 1979, pp. 271–276 (1980). MR 583709
  • [16] Peter Nyikos, The theory of nonmetrizable manifolds, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 633–684. MR 776633
  • [17] H. Poincaré, Sur les courbes définies par les équations différentielles, Journal de Math. pures et appl. (4) 1 (1885), 167-244.
  • [18] Michael Spivak, A comprehensive introduction to differential geometry. Vol. One, Published by M. Spivak, Brandeis Univ., Waltham, Mass., 1970. MR 0267467
  • [19] W. P. Thurston, Existence of codimension-one foliations, Ann. of Math. (2) 104 (1976), no. 2, 249–268. MR 0425985
  • [20] Hassler Whitney, Regular families of curves, Ann. of Math. (2) 34 (1933), no. 2, 244–270. MR 1503106, 10.2307/1968202

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57N99, 57R30, 37E35

Retrieve articles in all journals with MSC (2010): 57N99, 57R30, 37E35


Additional Information

Mathieu Baillif
Affiliation: Université de Genève, Section de Mathématiques, Genève 4, Switzerland
Email: labaffle@gmail.com

Alexandre Gabard
Affiliation: Université de Genève, Section de Mathématiques, Genève 4, Switzerland
Email: alexandregabard@hotmail.com

David Gauld
Affiliation: Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
Email: d.gauld@auckland.ac.nz

DOI: https://doi.org/10.1090/S0002-9939-2013-11900-3
Keywords: Non-metrisable manifolds, foliations, long pipes
Received by editor(s): April 4, 2011
Received by editor(s) in revised form: April 18, 2012
Published electronically: December 17, 2013
Additional Notes: The third author was supported in part by the Marsden Fund Council from government funding, administered by the Royal Society of New Zealand.
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2013 American Mathematical Society