Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Low Froude number limit of the rotating shallow water and Euler equations

Author: Kung-Chien Wu
Journal: Proc. Amer. Math. Soc. 142 (2014), 939-947
MSC (2010): Primary 35B25, 35Q31, 76B15
Published electronically: December 6, 2013
MathSciNet review: 3148528
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We perform the mathematical derivation of the rotating lake equations (or anelastic system) from the classical solution of the rotating shallow water and Euler equations when the Froude number tends to zero.

References [Enhancements On Off] (What's this?)

  • [1] Thomas Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal. 180 (2006), no. 1, 1-73. MR 2211706 (2006k:35206),
  • [2] H. Beirão da Veiga, Data dependence in the mathematical theory of compressible inviscid fluids, Arch. Rational Mech. Anal. 119 (1992), no. 2, 109-127. MR 1176361 (94g:35168),
  • [3] Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations 25 (2000), no. 3-4, 737-754. MR 1748352 (2001c:76124),
  • [4] D. Bresch, B. Desjardins, E. Grenier, and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case, Stud. Appl. Math. 109 (2002), no. 2, 125-149. MR 1917042 (2003g:76091),
  • [5] Didier Bresch, Marguerite Gisclon, and Chi-Kun Lin, An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit, M2AN Math. Model. Numer. Anal. 39 (2005), no. 3, 477-486. MR 2157146 (2006b:35268),
  • [6] Eduard Feireisl, Antonín Novotný, and Hana Petzeltová, Low Mach number limit for the Navier-Stokes system on unbounded domains under strong stratification, Comm. Partial Differential Equations 35 (2010), no. 1, 68-88. MR 2748618 (2012a:35239),
  • [7] Harvey Philip Greenspan, The theory of rotating fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, 1980. Reprint of the 1968 original. MR 639897 (83m:76077)
  • [8] Sergiu Klainerman and Andrew Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981), no. 4, 481-524. MR 615627 (84d:35089),
  • [9] C. David Levermore, Marcel Oliver, and Edriss S. Titi, Global well-posedness for models of shallow water in a basin with a varying bottom, Indiana Univ. Math. J. 45 (1996), no. 2, 479-510. MR 1414339 (97m:35214),
  • [10] Hai-Liang Li and Chi-Kun Lin, Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors, Comm. Math. Phys. 256 (2005), no. 1, 195-212. MR 2134341 (2005m:82158),
  • [11] Chi-Kun Lin and Kung-Chien Wu, Hydrodynamic limits of the nonlinear Klein-Gordon equation, J. Math. Pures Appl. (9) 98 (2012), no. 3, 328-345 (English, with English and French summaries). MR 2960337,
  • [12] Tai-Chia Lin and Ping Zhang, Incompressible and compressible limits of coupled systems of nonlinear Schrödinger equations, Comm. Math. Phys. 266 (2006), no. 2, 547-569. MR 2238888 (2007e:35261),
  • [13] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9) 77 (1998), no. 6, 585-627 (English, with English and French summaries). MR 1628173 (99d:76084),
  • [14] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308 (85e:35077)
  • [15] Andrew Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant Lecture Notes in Mathematics, vol. 9, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 1965452 (2004b:76152)
  • [16] Nader Masmoudi, From Vlasov-Poisson system to the incompressible Euler system, Comm. Partial Differential Equations 26 (2001), no. 9-10, 1913-1928. MR 1865949 (2004c:82123),
  • [17] Nader Masmoudi, Rigorous derivation of the anelastic approximation, J. Math. Pures Appl. (9) 88 (2007), no. 3, 230-240 (English, with English and French summaries). MR 2355456 (2009e:76175),
  • [18] G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations, J. Differential Equations 187 (2003), no. 1, 106-183. MR 1946548 (2003i:76077),
  • [19] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, 1986.
  • [20] Marjolaine Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations 27 (2002), no. 11-12, 2311-2331. MR 1944031 (2003j:82051),

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B25, 35Q31, 76B15

Retrieve articles in all journals with MSC (2010): 35B25, 35Q31, 76B15

Additional Information

Kung-Chien Wu
Affiliation: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge, CB3 OWA, United Kingdom
Address at time of publication: Department of Mathematics, National Kaohsiung Normal University, 824 Kaohsiung, Taiwan

Keywords: Shallow water equations, Euler equations, low Froude number limit, incompressible limit, lake equations, anelastic system.
Received by editor(s): November 24, 2011
Received by editor(s) in revised form: April 13, 2012
Published electronically: December 6, 2013
Additional Notes: It is a pleasure to thank Professor Chi-Kun Lin for stimulating discussions concerning this paper. The author would also like to thank Dr. Clément Mouhot for his kind invitation to visit Cambridge during the 2011–2013 academic years.
This work is supported by the Tsz-Tza Foundation (Taiwan), National Science Council under Grant 102-2115-M-017-004-MY2 (Taiwan) and ERC Grant MATKIT (European Union)
Communicated by: Walter Craig
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society