Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Log-Lipschitz embeddings of homogeneous sets with sharp logarithmic exponents and slicing products of balls


Author: James C. Robinson
Journal: Proc. Amer. Math. Soc. 142 (2014), 1275-1288
MSC (2010): Primary 37L30, 54H20, 57N60
DOI: https://doi.org/10.1090/S0002-9939-2014-11852-1
Published electronically: January 21, 2014
MathSciNet review: 3162249
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ X$ is a compact subset of a Banach space with $ X-X$ homogeneous (equivalently `doubling' or with finite Assouad dimension), then $ X$ can be embedded into some $ \mathbb{R}^n$ (with $ n$ sufficiently large) using a linear map $ L$ whose inverse is Lipschitz to within logarithmic corrections. More precisely, there exist $ c,\alpha >0$ such that

$\displaystyle c\ \frac {\Vert x-y\Vert}{\vert\,\log \Vert x-y\Vert\,\vert^\alpha }\le \vert Lx-Ly\vert\le c\Vert x-y\Vert$$\displaystyle \quad \mbox {for all}\quad x,y\in X,\ \Vert x-y\Vert<\delta ,$

for some $ \delta $ sufficiently small. It is known that one must have $ \alpha >1$ in the case of a general Banach space and $ \alpha >1/2$ in the case of a Hilbert space. It is shown in this paper that these exponents can be achieved.

While the argument in a general Banach space is relatively straightforward, the Hilbert space case relies on the fact that the maximum volume of a hyperplane slice of a $ k$-fold product of unit volume $ N$-balls is bounded independent of $ k$ (this provides a `qualitative' generalisation of a result on slices of the unit cube due to Hensley (Proc.AMS 73 (1979), 95-100) and Ball (Proc.AMS 97 (1986), 465-473)).


References [Enhancements On Off] (What's this?)

  • [1] Goulnara Arzhantseva, Cornelia Druţu, and Mark Sapir, Compression functions of uniform embeddings of groups into Hilbert and Banach spaces, J. Reine Angew. Math. 633 (2009), 213-235. MR 2561202 (2010m:20065), https://doi.org/10.1515/CRELLE.2009.066
  • [2] Patrice Assouad, Plongements lipschitziens dans $ {\bf R}^{n}$, Bull. Soc. Math. France 111 (1983), no. 4, 429-448 (French, with English summary). MR 763553 (86f:54050)
  • [3] Keith Ball, Cube slicing in $ {\bf R}^n$, Proc. Amer. Math. Soc. 97 (1986), no. 3, 465-473. MR 840631 (87g:60018), https://doi.org/10.2307/2046239
  • [4] A. Ben-Artzi, A. Eden, C. Foias, and B. Nicolaenko, Hölder continuity for the inverse of Mañé's projection, J. Math. Anal. Appl. 178 (1993), no. 1, 22-29. MR 1231724 (94d:58091), https://doi.org/10.1006/jmaa.1993.1288
  • [5] M.G. Bouligand, `Ensembles impropres et nombre dimensionnel', Bull. Sci. Math. 52 (1928) 320-44, 361-376.
  • [6] Jens Peter Reus Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Publ. Dép. Math. (Lyon) 10 (1973), no. 2, 29-39. Actes du Deuxième Colloque d'Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, pp. 29-39. MR 0361770 (50 #14215)
  • [7] A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential attractors for dissipative evolution equations, RAM: Research in Applied Mathematics, vol. 37, Masson, Paris, 1994. MR 1335230 (96i:34148)
  • [8] C. Foias and E. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization, Indiana Univ. Math. J. 45 (1996), no. 3, 603-616. MR 1422098 (97m:58120), https://doi.org/10.1512/iumj.1996.45.1326
  • [9] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437 (2011c:42001)
  • [10] Juha Heinonen, Geometric embeddings of metric spaces, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 90, University of Jyväskylä, Jyväskylä, 2003. MR 2014506 (2004i:42018)
  • [11] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • [12] Douglas Hensley, Slicing the cube in $ {\bf R}^{n}$ and probability (bounds for the measure of a central cube slice in $ {\bf R}^{n}$ by probability methods), Proc. Amer. Math. Soc. 73 (1979), no. 1, 95-100. MR 512066 (80b:60025), https://doi.org/10.2307/2042889
  • [13] Brian R. Hunt, Tim Sauer, and James A. Yorke, Prevalence: a translation-invariant ``almost every'' on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 217-238. MR 1161274 (93k:28018), https://doi.org/10.1090/S0273-0979-1992-00328-2
  • [14] Brian R. Hunt and Vadim Yu. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity 12 (1999), no. 5, 1263-1275. MR 1710097 (2001a:28009), https://doi.org/10.1088/0951-7715/12/5/303
  • [15] Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, NJ, 1941. MR 0006493 (3,312b)
  • [16] William B. Johnson and Joram Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Conference in modern analysis and probability (New Haven, Conn., 1982), Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 189-206. MR 737400 (86a:46018), https://doi.org/10.1090/conm/026/737400
  • [17] Tomi J. Laakso, Plane with $ A_\infty $-weighted metric not bi-Lipschitz embeddable to $ {\mathbb{R}}^N$, Bull. London Math. Soc. 34 (2002), no. 6, 667-676. MR 1924353 (2003h:30029), https://doi.org/10.1112/S0024609302001200
  • [18] Urs Lang and Conrad Plaut, Bilipschitz embeddings of metric spaces into space forms, Geom. Dedicata 87 (2001), no. 1-3, 285-307. MR 1866853 (2002i:51011), https://doi.org/10.1023/A:1012093209450
  • [19] Jouni Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), no. 1, 23-76. MR 1608518 (99m:54023)
  • [20] Ricardo Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical systems and turbulence, Warwick, 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin, 1981, pp. 230-242. MR 654892 (84k:58119)
  • [21] Eric Olson, Bouligand dimension and almost Lipschitz embeddings, Pacific J. Math. 202 (2002), no. 2, 459-474. MR 1888175 (2003a:37030), https://doi.org/10.2140/pjm.2002.202.459
  • [22] Eric J. Olson and James C. Robinson, Almost bi-Lipschitz embeddings and almost homogeneous sets, Trans. Amer. Math. Soc. 362 (2010), no. 1, 145-168. MR 2550147 (2010m:54031), https://doi.org/10.1090/S0002-9947-09-04604-2
  • [23] William Ott and James A. Yorke, Prevalence, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 3, 263-290 (electronic). MR 2149086 (2006d:28012), https://doi.org/10.1090/S0273-0979-05-01060-8
  • [24] E. Pinto de Moura and J. C. Robinson, Orthogonal sequences and regularity of embeddings into finite-dimensional spaces, J. Math. Anal. Appl. 368 (2010), no. 1, 254-262. MR 2609274 (2011j:54040), https://doi.org/10.1016/j.jmaa.2010.02.052
  • [25] James C. Robinson, Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces, Nonlinearity 22 (2009), no. 4, 711-728. MR 2486352 (2011e:46034), https://doi.org/10.1088/0951-7715/22/4/001
  • [26] James C. Robinson, Dimensions, embeddings, and attractors, Cambridge Tracts in Mathematics, vol. 186, Cambridge University Press, Cambridge, 2011. MR 2767108 (2012i:37035)
  • [27] Stephen Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about $ A_\infty $-weights, Rev. Mat. Iberoamericana 12 (1996), no. 2, 337-410. MR 1402671 (97e:30040), https://doi.org/10.4171/RMI/201
  • [28] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 0290095 (44 #7280)
  • [29] J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84, Springer-Verlag, New York, 1975. MR 0461107 (57 #1092)
  • [30] B. Klartag and S. Mendelson, Empirical processes and random projections, J. Funct. Anal. 225 (2005), no. 1, 229-245. MR 2149924 (2006m:60019), https://doi.org/10.1016/j.jfa.2004.10.009
  • [31] Piotr Indyk and Assaf Naor, Nearest-neighbor-preserving embeddings, ACM Trans. Algorithms 3 (2007), no. 3, Art. 31, 12. MR 2344022 (2008m:68209), https://doi.org/10.1145/1273340.1273347
  • [32] Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu, Embeddings of surfaces, curves, and moving points in Euclidean space, Computational geometry (SCG'07), ACM, New York, 2007, pp. 381-389. MR 2469188 (2010c:51025), https://doi.org/10.1145/1247069.1247135

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37L30, 54H20, 57N60

Retrieve articles in all journals with MSC (2010): 37L30, 54H20, 57N60


Additional Information

James C. Robinson
Affiliation: Mathematical Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email: j.c.robinson@warwick.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-2014-11852-1
Received by editor(s): September 4, 2011
Received by editor(s) in revised form: May 9, 2012
Published electronically: January 21, 2014
Additional Notes: The author was supported by an EPSRC Leadership Fellowship EP/G007470/1.
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society