Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Morava K-theory of $ M_{12}$


Author: Björn Schuster
Journal: Proc. Amer. Math. Soc. 142 (2014), 1437-1445
MSC (2010): Primary 55R35, 55N20; Secondary 57T25
DOI: https://doi.org/10.1090/S0002-9939-2014-11873-9
Published electronically: January 27, 2014
MathSciNet review: 3162263
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for all $ n$ and all primes $ p$, the Morava K-theory of the classifying space of the Mathieu group $ M_{12}$ is generated by transfers of Euler classes.


References [Enhancements On Off] (What's this?)

  • [1] Malkhaz Bakuradze and Vladimir Vershinin, Morava $ K$-theory rings for the dihedral, semidihedral and generalized quaternion groups in Chern classes, Proc. Amer. Math. Soc. 134 (2006), no. 12, 3707-3714. MR 2240687 (2007c:55007), https://doi.org/10.1090/S0002-9939-06-08424-3
  • [2] Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000), no. 3, 553-594 (electronic). MR 1758754 (2001k:55015), https://doi.org/10.1090/S0894-0347-00-00332-5
  • [3] John Hunton, The Morava $ K$-theories of wreath products, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 309-318. MR 1027783 (91a:55004), https://doi.org/10.1017/S0305004100068572
  • [4] Igor Kriz, Morava $ K$-theory of classifying spaces: some calculations, Topology 36 (1997), no. 6, 1247-1273. MR 1452850 (99a:55016), https://doi.org/10.1016/S0040-9383(96)00049-3
  • [5] Carlos Prieto, Transfer and the spectral sequence of a fibration, Trans. Amer. Math. Soc. 271 (1982), no. 1, 133-142. MR 648082 (84e:55010), https://doi.org/10.2307/1998755
  • [6] Daniel Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29-56 (1971). MR 0290382 (44 #7566)
  • [7] Björn Schuster, On the Morava $ K$-theory of some finite $ 2$-groups, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 1, 7-13. MR 1418356 (97i:55008), https://doi.org/10.1017/S0305004196001156
  • [8] Björn Schuster, $ K(n)$ Chern approximations of some finite groups, Algebr. Geom. Topol. 12 (2012), no. 3, 1695-1720. MR 2966700, https://doi.org/10.2140/agt.2012.12.1695
  • [9] Björn Schuster, Morava $ K$-theory of groups of order 32, Algebr. Geom. Topol. 11 (2011), no. 1, 503-521. MR 2783236 (2012j:55006), https://doi.org/10.2140/agt.2011.11.503
  • [10] Björn Schuster and Nobuaki Yagita, Morava $ K$-theory of extraspecial 2-groups, Proc. Amer. Math. Soc. 132 (2004), no. 4, 1229-1239 (electronic). MR 2045443 (2005g:55027), https://doi.org/10.1090/S0002-9939-03-07183-1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55R35, 55N20, 57T25

Retrieve articles in all journals with MSC (2010): 55R35, 55N20, 57T25


Additional Information

Björn Schuster
Affiliation: FB C Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal, Germany
Address at time of publication: Fakultät für Mathematik, Ruhr-Universität Bochum, 44801 Bochum, Germany
Email: bjoern.schuster@rub.de

DOI: https://doi.org/10.1090/S0002-9939-2014-11873-9
Received by editor(s): September 8, 2010
Received by editor(s) in revised form: May 10, 2012
Published electronically: January 27, 2014
Communicated by: Brooke Shipley
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society