Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Gorenstein and cohomological dimension of groups


Author: Olympia Talelli
Journal: Proc. Amer. Math. Soc. 142 (2014), 1175-1180
MSC (2010): Primary 20J05; Secondary 55R35
DOI: https://doi.org/10.1090/S0002-9939-2014-11883-1
Published electronically: January 30, 2014
MathSciNet review: 3162240
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Here we relate the Gorenstein dimension of a group $ G$, $ \mathrm {Gcd}_{R}G$, over $ \mathbb{Z}$ and $ \mathbb{Q}$ to the cohomological dimension of $ G$, $ \mathrm {cd}_{R}G$, over $ \mathbb{Z}$ and $ \mathbb{Q}$, and show that if $ G$ is in $ {\scriptstyle \bf {LH}}\mathfrak{F}$, a large class of groups defined by Kropholler, then $ \mathrm {cd}_{\mathbb{Q}}G=\mathrm {Gcd}_{\mathbb{Q}}G$ and if $ G$ is torsion free, then $ \mathrm {Gcd}_{\mathbb{Z}}G= \mathrm {cd}_{\mathbb{Z}}G$. We also show that for any group $ G$, $ \mathrm {Gcd}_{\mathbb{Q}}G\leq \mathrm {Gcd}_{\mathbb{Z}}G$.


References [Enhancements On Off] (What's this?)

  • 1. J. Asadollahi, A. Bahlekeh and Sh. Salarian, On the hierarchy of cohomological dimensions of groups, J. Pure Appl. Algebra 213 (2009), 1795-1803. MR 2518178 (2010i:20062)
  • 2. A. Bahlekeh, F. Dembegioti, O. Talelli, Gorenstein dimension and proper actions, Bull. London Math. Soc. 41 (2009), 859-871. MR 2557467 (2010k:20084)
  • 3. M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'Algébre Commutative dirigé par Pierre Samuel, 1966/67. Texte rédigé, d'aprés des exposés de Maurice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles, Secrétariat mathématique, Paris, 1967. MR 0225844 (37:1435)
  • 4. M. Bestvina, The virtual cohomological dimension of Coxeter groups, Geometric group theory, Vol. 1 (Sussex, 1991), 19-23, London Math. Soc. Lecture Note Ser., 181, Cambridge Univ. Press, Cambridge, 1993. MR 1238512 (94g:20056)
  • 5. J. Cornick and P. H. Kropholler, Homological finiteness conditions for modules over group algebras, J. London Math. Soc. 58 (1998), 49-62. MR 1666074 (99k:20105)
  • 6. I. Emmanouil and O. Talelli, On the flat length of injective modules, J. London Math. Soc. 84 (2011), 408-432. MR 2835337
  • 7. I. Emmanouil, On certain cohomological invariants of groups, Adv. Math. 225 (6) (2010), 3446-3462. MR 2729012 (2011m:20122)
  • 8. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (4) (1995), 611-633. MR 1363858 (97c:16011)
  • 9. T. V. Gedrich and K. W. Gruenberg, Complete cohomological functors on groups, Topology and its Applications 25 (1987), 203-223. MR 884544 (89h:20073)
  • 10. H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167-193. MR 2038564 (2004k:16013)
  • 11. B. M. Ikenaga, Homological dimension and Farrell cohomology, J. Algebra 87 (1984), 422-457. MR 739945 (85k:20152)
  • 12. P. H. Kropholler, On groups of type $ \mathrm {FP}_\infty $, J. Pure Appl. Algebra 90 (1993), 55-67. MR 1246274 (94j:20051b)
  • 13. N. Petrosyan, Jumps in cohomology and free group actions, J. Pure Appl. Algebra 210 (2007), 695-703. MR 2324601 (2008f:20104)
  • 14. O. Talelli, On groups of type $ \Phi $, Arch. Math. 89 (2007), 24-32. MR 2322776 (2009c:20094)
  • 15. O. Talelli, A characterization for cohomological dimension for a big class of groups, J. Algebra 326 (2011), 238-244. MR 2746064 (2012a:16017)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20J05, 55R35

Retrieve articles in all journals with MSC (2010): 20J05, 55R35


Additional Information

Olympia Talelli
Affiliation: Department of Mathematics, University of Athens, Panepistimiopolis, GR-157 84, Athens, Greece
Email: otalelli@math.uoa.gr

DOI: https://doi.org/10.1090/S0002-9939-2014-11883-1
Received by editor(s): May 25, 2011
Received by editor(s) in revised form: April 25, 2012, and May 21, 2012
Published electronically: January 30, 2014
Additional Notes: This research supported by a GSRT/Greece excellence grant, cofounded by the ESF/EV and Natural Resources.
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society