Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Kaplansky Theorem for completely regular spaces


Authors: Lei Li and Ngai-Ching Wong
Journal: Proc. Amer. Math. Soc. 142 (2014), 1381-1389
MSC (2000): Primary 46E40, 54D60; Secondary 46B42, 47B65
DOI: https://doi.org/10.1090/S0002-9939-2014-11889-2
Published electronically: January 30, 2014
MathSciNet review: 3162258
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X, Y$ be realcompact spaces or completely regular spaces consisting of $ G_\delta $-points. Let $ \phi $ be a linear bijective map from $ C(X)$ (resp. $ C^b(X)$) onto $ C(Y)$ (resp. $ C^b(Y)$). We show that if $ \phi $ preserves nonvanishing functions, that is,

$\displaystyle f(x)\neq 0,\forall \, x\in X, \quad \Longleftrightarrow \quad \phi (f)(y)\neq 0, \forall \, y\in Y, $

then $ \phi $ is a weighted composition operator

$\displaystyle \phi (f)=\phi (1)\cdot f\circ \tau , $

arising from a homeomorphism $ \tau $ from $ Y$ onto $ X$. This result is applied also to other nice function spaces, e.g., uniformly or Lipschitz continuous functions on metric spaces.

References [Enhancements On Off] (What's this?)

  • [1] Jesús Araujo, Separating maps and linear isometries between some spaces of continuous functions, J. Math. Anal. Appl. 226 (1998), no. 1, 23-39. MR 1646465 (99h:46057), https://doi.org/10.1006/jmaa.1998.6031
  • [2] Jesús Araujo, Realcompactness and Banach-Stone theorems, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 2, 247-258. MR 2080425 (2005e:46057)
  • [3] Jesús Araujo and Luis Dubarbie, Biseparating maps between Lipschitz function spaces, J. Math. Anal. Appl. 357 (2009), no. 1, 191-200. MR 2526819 (2010c:46088), https://doi.org/10.1016/j.jmaa.2009.03.065
  • [4] Bernard Aupetit, A primer on spectral theory, Universitext, Springer-Verlag, New York, 1991. MR 1083349 (92c:46001)
  • [5] Bernard Aupetit, Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. London Math. Soc. (2) 62 (2000), no. 3, 917-924. MR 1794294 (2001h:46078), https://doi.org/10.1112/S0024610700001514
  • [6] Luis Dubarbie, Maps preserving common zeros between subspaces of vector-valued continuous functions, Positivity 14 (2010), no. 4, 695-703. MR 2741327 (2012a:47082), https://doi.org/10.1007/s11117-010-0046-z
  • [7] M. Isabel Garrido and Jesús A. Jaramillo, A Banach-Stone theorem for uniformly continuous functions, Monatsh. Math. 131 (2000), no. 3, 189-192. MR 1801746 (2003g:54035), https://doi.org/10.1007/s006050070008
  • [8] M. I. Garrido and J. A. Jaramillo, Homomorphisms on function lattices, Monatsh. Math. 141 (2004), no. 2, 127-146. MR 2037989 (2004k:46034), https://doi.org/10.1007/s00605-002-0011-4
  • [9] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199 (22 #6994)
  • [10] Andrew M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172. MR 0213878 (35 #4732)
  • [11] Krzysztof Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), no. 2, 139-144. MR 1060366 (92j:46049), https://doi.org/10.4153/CMB-1990-024-2
  • [12] Jyh-Shyang Jeang and Ngai-Ching Wong, Weighted composition operators of $ C_0(X)$'s, J. Math. Anal. Appl. 201 (1996), no. 3, 981-993. MR 1400575 (97f:47029), https://doi.org/10.1006/jmaa.1996.0296
  • [13] J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343. MR 0226408 (37 #1998)
  • [14] Irving Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), 617-623. MR 0020715 (8,587e)
  • [15] Irving Kaplansky, Lattices of continuous functions. II, Amer. J. Math. 70 (1948), 626-634. MR 0026240 (10,127a)
  • [16] Miguel Lacruz and José G. Llavona, Composition operators between algebras of uniformly continuous functions, Arch. Math. (Basel) 69 (1997), no. 1, 52-56. MR 1452159 (98g:47026), https://doi.org/10.1007/s000130050092
  • [17] Denny H. Leung and Wee-Kee Tang, Banach-Stone theorems for maps preserving common zeros, Positivity 14 (2010), no. 1, 17-42. MR 2596461 (2011b:46047), https://doi.org/10.1007/s11117-008-0002-3
  • [18] Maurice D. Weir, Hewitt-Nachbin spaces, North-Holland Mathematics Studies, No. 17, Notas de Matemática, No. 57 [Mathematical Notes, No. 57], North-Holland Publishing Co., Amsterdam, 1975. MR 0514909 (58 #24158)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E40, 54D60, 46B42, 47B65

Retrieve articles in all journals with MSC (2000): 46E40, 54D60, 46B42, 47B65


Additional Information

Lei Li
Affiliation: School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, People’s Republic of China
Email: leilee@nankai.edu.cn

Ngai-Ching Wong
Affiliation: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
Email: wong@math.nsysu.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-2014-11889-2
Keywords: Nonvanishing preservers, disjointness preservers, common zero preservers, realcompact spaces, Banach-Stone theorems
Received by editor(s): October 4, 2011
Received by editor(s) in revised form: May 5, 2012
Published electronically: January 30, 2014
Additional Notes: This work was supported by The National Natural Science Foundation of China (grants 11071129, 11301285) and Taiwan NSC (grants 098-2811-M-110-039, 99-2115-M-110-007-MY3).
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society