Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Limit theorems for rank-one Lie groups


Authors: Alexander Gorodnik and Felipe A. Ramírez
Journal: Proc. Amer. Math. Soc. 142 (2014), 1359-1369
MSC (2010): Primary 37A15, 22F10; Secondary 22D40, 22E46
DOI: https://doi.org/10.1090/S0002-9939-2014-12060-0
Published electronically: January 29, 2014
MathSciNet review: 3162256
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate asymptotic behaviour of averaging operators for actions of simple rank-one Lie groups. It was previously known that these averaging operators converge almost everywhere, and we establish a more precise asymptotic formula that describes their deviations from the limit.


References [Enhancements On Off] (What's this?)

  • [A89] James Arthur, Unipotent automorphic representations: conjectures, Orbites unipotentes et représentations, II. Astérisque 171-172 (1989), 13-71. MR 1021499 (91f:22030)
  • [BC05] Nicolas Bergeron and Laurent Clozel, Spectre automorphe des variétés hyperboliques et applications topologiques, Astérisque 303 (2005), xx+218 (French, with English and French summaries). MR 2245761 (2007j:22031)
  • [BC10] N. Bergeron and L. Clozel, Quelques conséquences des travaux d'Arthur pour le spectre et la topologie des variétés hyperboliques. arXiv:1004.1085.
  • [BLS92] M. Burger, J.-S. Li, and P. Sarnak, Ramanujan duals and automorphic spectrum, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 253-257. MR 1118700 (92h:22023), https://doi.org/10.1090/S0273-0979-1992-00267-7
  • [BS91] M. Burger and P. Sarnak, Ramanujan duals. II, Invent. Math. 106 (1991), no. 1, 1-11. MR 1123369 (92m:22005), https://doi.org/10.1007/BF01243900
  • [BD87] Robert Burton and Manfred Denker, On the central limit theorem for dynamical systems, Trans. Amer. Math. Soc. 302 (1987), no. 2, 715-726. MR 891642 (88i:60039), https://doi.org/10.2307/2000864
  • [GV88] Ramesh Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 101, Springer-Verlag, Berlin, 1988. MR 954385 (89m:22015)
  • [HC58a] Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241-310. MR 0094407 (20 #925)
  • [HC58b] Harish-Chandra, Spherical functions on a semisimple Lie group. II, Amer. J. Math. 80 (1958), 553-613. MR 0101279 (21 #92)
  • [H] Sigurur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York, 1962. MR 0145455 (26 #2986)
  • [K84] Tom H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, pp. 1-85. MR 774055 (86m:33018)
  • [K69] Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627-642. MR 0245725 (39 #7031)
  • [N94] Amos Nevo, Pointwise ergodic theorems for radial averages on simple Lie groups. I, Duke Math. J. 76 (1994), no. 1, 113-140. MR 1301188 (96c:28027), https://doi.org/10.1215/S0012-7094-94-07605-9
  • [N97] Amos Nevo, Pointwise ergodic theorems for radial averages on simple Lie groups. II, Duke Math. J. 86 (1997), no. 2, 239-259. MR 1430433 (98m:28041), https://doi.org/10.1215/S0012-7094-97-08607-5
  • [NS97] Amos Nevo and Elias M. Stein, Analogs of Wiener's ergodic theorems for semisimple groups. I, Ann. of Math. (2) 145 (1997), no. 3, 565-595. MR 1454704 (98m:22007), https://doi.org/10.2307/2951845
  • [R73] M. Ratner, The central limit theorem for geodesic flows on $ n$-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973), 181-197. MR 0333121 (48 #11446)
  • [S05] Peter Sarnak, Notes on the generalized Ramanujan conjectures, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 659-685. MR 2192019 (2007a:11067)
  • [S60] Ja. G. Sinaĭ, The central limit theorem for geodesic flows on manifolds of constant negative curvature, Soviet Math. Dokl. 1 (1960), 983-987. MR 0125607 (23 #A2906)
  • [SW] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972 (46 #4102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37A15, 22F10, 22D40, 22E46

Retrieve articles in all journals with MSC (2010): 37A15, 22F10, 22D40, 22E46


Additional Information

Alexander Gorodnik
Affiliation: School of Mathematics, University of Bristol, Bristol, United Kingdom
Email: a.gorodnik@bristol.ac.uk

Felipe A. Ramírez
Affiliation: School of Mathematics, University of Bristol, Bristol, United Kingdom
Email: f.a.ramirez@bristol.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-2014-12060-0
Received by editor(s): May 22, 2012
Published electronically: January 29, 2014
Communicated by: Nimish Shah
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society