Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On the differential simplicity of affine rings


Authors: S. C. Coutinho and D. Levcovitz
Journal: Proc. Amer. Math. Soc. 142 (2014), 1701-1704
MSC (2010): Primary 37F75, 13N15; Secondary 37J30, 32C38, 32S65
DOI: https://doi.org/10.1090/S0002-9939-2014-11652-2
Published electronically: February 17, 2014
MathSciNet review: 3168476
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every complex regular affine ring is differentially simple relative to a set with only two derivations.


References [Enhancements On Off] (What's this?)

  • [1] J. Archer, Derivations on commutative rings and projective modules over skew polynomial rings, unpublished, 1981, Thesis (Ph.D.)-Leeds University.
  • [2] Richard E. Block, Differentiably simple algebras, Bull. Amer. Math. Soc. 74 (1968), 1086-1090. MR 0231867 (38 #195)
  • [3] Paulo Brumatti, Yves Lequain, and Daniel Levcovitz, Differential simplicity in polynomial rings and algebraic independence of power series, J. London Math. Soc. (2) 68 (2003), no. 3, 615-630. MR 2009440 (2004h:13026), https://doi.org/10.1112/S0024610703004708
  • [4] S. C. Coutinho, $ d$-simple rings and simple $ {\mathcal {D}}$-modules, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 3, 405-415. MR 1656789 (99j:16013), https://doi.org/10.1017/S0305004198002965
  • [5] S. C. Coutinho, On the differential simplicity of polynomial rings, J. Algebra 264 (2003), no. 2, 442-468. MR 1981415 (2004k:13045), https://doi.org/10.1016/S0021-8693(03)00099-1
  • [6] S. C. Coutinho, Nonholonomic simple $ \mathcal {D}$-modules from simple derivations, Glasg. Math. J. 49 (2007), no. 1, 11-21. MR 2337862 (2008d:13035), https://doi.org/10.1017/S0017089507003370
  • [7] S. C. Coutinho and J. V. Pereira, On the density of algebraic foliations without algebraic invariant sets, J. Reine Angew. Math. 594 (2006), 117-135. MR 2248154 (2007i:14010), https://doi.org/10.1515/CRELLE.2006.037
  • [8] Ada Maria De S. Doering, Yves Lequain, and Cydara Ripoll, Differential simplicity and cyclic maximal ideals of the Weyl algebra $ A_2(K)$, Glasg. Math. J. 48 (2006), no. 2, 269-274. MR 2256977 (2007k:16046), https://doi.org/10.1017/S0017089506003053
  • [9] Laurence R. Harper Jr., On differentiably simple algebras, Trans. Amer. Math. Soc. 100 (1961), 63-72. MR 0130250 (24 #A116)
  • [10] R. Hart, Derivations on regular local rings of finitely generated type, J. London Math. Soc. (2) 10 (1975), 292-294. MR 0369369 (51 #5602)
  • [11] Shigeru Iitaka, Algebraic geometry, An introduction to birational geometry of algebraic varieties, North-Holland Mathematical Library, 24, Graduate Texts in Mathematics, vol. 76, Springer-Verlag, New York, 1982. MR 637060 (84j:14001)
  • [12] Yves Lequain, Daniel Levcovitz, and José Carlos de Souza Junior, $ D$-simple rings and principal maximal ideals of the Weyl algebra, Glasg. Math. J. 47 (2005), no. 2, 269-285. MR 2203494 (2006j:16042), https://doi.org/10.1017/S001708950500248X
  • [13] Qing Liu, Algebraic geometry and arithmetic curves, translated from the French by Reinie Erné, Oxford Science Publications, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. MR 1917232 (2003g:14001)
  • [14] Andrzej Maciejewski, Jean Moulin-Ollagnier, and Andrzej Nowicki, Simple quadratic derivations in two variables, Comm. Algebra 29 (2001), no. 11, 5095-5113. MR 1856933 (2002g:13059), https://doi.org/10.1081/AGB-100106804
  • [15] A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math. 89 (1967), 22-42. MR 0212027 (35 #2902)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37F75, 13N15, 37J30, 32C38, 32S65

Retrieve articles in all journals with MSC (2010): 37F75, 13N15, 37J30, 32C38, 32S65


Additional Information

S. C. Coutinho
Affiliation: Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, RJ, Brazil
Email: collier@dcc.ufrj.br

D. Levcovitz
Affiliation: Departamento de Matemática, USP-S. Carlos, 13560-970, São Carlos, SP, Brazil
Email: lev@icmc.usp.br

DOI: https://doi.org/10.1090/S0002-9939-2014-11652-2
Keywords: Differential ideal, differential simplicity, holomorphic foliation
Received by editor(s): December 12, 2011
Received by editor(s) in revised form: June 21, 2012
Published electronically: February 17, 2014
Additional Notes: The work of the first author was partially supported by a grant from CNPq.
Communicated by: Irena Peeva
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society