Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Conformal derivations of semidirect products of Lie conformal algebras and their conformal modules


Authors: Jiancang Guo and Youjun Tan
Journal: Proc. Amer. Math. Soc. 142 (2014), 1471-1483
MSC (2010): Primary 16W25, 17B67
DOI: https://doi.org/10.1090/S0002-9939-2014-11880-6
Published electronically: January 30, 2014
MathSciNet review: 3168455
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conformal derivations from Lie conformal algebras to their conformal modules are used to describe conformal derivations of Lie conformal algebras of semidirect product type.


References [Enhancements On Off] (What's this?)

  • [1] Bojko Bakalov, Alessandro D'Andrea, and Victor G. Kac, Theory of finite pseudoalgebras, Adv. Math. 162 (2001), no. 1, 1-140. MR 1849687 (2003c:17020), https://doi.org/10.1006/aima.2001.1993
  • [2] Bojko Bakalov, Victor G. Kac, and Alexander A. Voronov, Cohomology of conformal algebras, Comm. Math. Phys. 200 (1999), no. 3, 561-598. MR 1675121 (2000f:17028), https://doi.org/10.1007/s002200050541
  • [3] Shun-Jen Cheng and Victor G. Kac, Conformal modules, Asian J. Math. 1 (1997), no. 1, 181-193. MR 1480993 (98j:17026)
  • [4] Shun-Jen Cheng, Victor G. Kac, and Minoru Wakimoto, Extensions of conformal modules, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., vol. 160, Birkhäuser Boston, Boston, MA, 1998, pp. 79-129. MR 1653022 (99i:17028)
  • [5] Alessandro D'Andrea and Victor G. Kac, Structure theory of finite conformal algebras, Selecta Math. (N.S.) 4 (1998), no. 3, 377-418. MR 1654574 (2000b:17030), https://doi.org/10.1007/s000290050036
  • [6] A. De Sole, P. Hekmati and V. G. Kac, Calculus structure on the Lie conformal algebra complex and the variational complex, J. Math. Phys. 52 (2011), no. 5, 053510, 35 pp. MR 2839091
  • [7] Alberto De Sole and Victor G. Kac, Lie conformal algebra cohomology and the variational complex, Comm. Math. Phys. 292 (2009), no. 3, 667-719. MR 2551791 (2011g:17038), https://doi.org/10.1007/s00220-009-0886-1
  • [8] Davide Fattori, Victor G. Kac, and Alexander Retakh, Structure theory of finite Lie conformal superalgebras, Lie theory and its applications in physics V, World Sci. Publ., River Edge, NJ, 2004, pp. 27-63. MR 2172172 (2006g:17028), https://doi.org/10.1142/9789812702562_0002
  • [9] Victor Kac, Vertex algebras for beginners, 2nd ed., University Lecture Series, vol. 10, American Mathematical Society, Providence, RI, 1998. MR 1651389 (99f:17033)
  • [10] Pavel Kolesnikov, On finite representations of conformal algebras, J. Algebra 331 (2011), 169-193. MR 2774653 (2012g:17038), https://doi.org/10.1016/j.jalgebra.2010.12.014
  • [11] P. S. Kolesnikov, Simple associative conformal algebras of linear growth, J. Algebra 295 (2006), no. 1, 247-268. MR 2188860 (2006i:16045), https://doi.org/10.1016/j.jalgebra.2005.08.004
  • [12] P. S. Kolesnikov, Associative conformal algebras with finite faithful representation, Adv. Math. 202 (2006), no. 2, 602-637. MR 2222361 (2006m:16041), https://doi.org/10.1016/j.aim.2005.04.001
  • [13] Alexander Retakh, Structure and representations of conformal algebras, Algebras, rings and their representations, World Sci. Publ., Hackensack, NJ, 2006, pp. 289-311. MR 2234312 (2007c:17038), https://doi.org/10.1142/9789812774552_0018
  • [14] Alexander Retakh, Associative conformal algebras of linear growth, J. Algebra 237 (2001), no. 2, 769-788. MR 1816715 (2002f:16071), https://doi.org/10.1006/jabr.2000.8616
  • [15] Michael Roitman, Universal enveloping conformal algebras, Selecta Math. (N.S.) 6 (2000), no. 3, 319-345. MR 1817616 (2002d:17034), https://doi.org/10.1007/PL00001391
  • [16] Yucai Su and Xiaoqing Yue, Filtered Lie conformal algebras whose associated graded algebras are isomorphic to that of general conformal algebra $ {\rm gc}_1$, J. Algebra 340 (2011), 182-198. MR 2813568 (2012e:17047), https://doi.org/10.1016/j.jalgebra.2011.06.001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16W25, 17B67

Retrieve articles in all journals with MSC (2010): 16W25, 17B67


Additional Information

Jiancang Guo
Affiliation: Mathematical College, Sichuan University, Chengdu, 610064, People’s Republic of China
Email: guojiancang01@163.com

Youjun Tan
Affiliation: Mathematical College, Sichuan University, Chengdu, 610064, People’s Republic of China
Email: ytan@scu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2014-11880-6
Keywords: Lie conformal algebras, conformal modules, conformal derivations
Received by editor(s): January 5, 2012
Received by editor(s) in revised form: May 27, 2012
Published electronically: January 30, 2014
Additional Notes: The second author is the corresponding author and was supported by grant No. 11171233 of the NSF of China
The authors are grateful for the referee’s helpful comments on the original manuscript
Communicated by: Kailash C. Misra
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society