Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Bannai-Ito polynomials as Racah coefficients of the $ sl_{-1}(2)$ algebra


Authors: Vincent X. Genest, Luc Vinet and Alexei Zhedanov
Journal: Proc. Amer. Math. Soc. 142 (2014), 1545-1560
MSC (2010): Primary 16T05, 17B80, 33C45, 33C47, 81R05
DOI: https://doi.org/10.1090/S0002-9939-2014-11970-8
Published electronically: February 18, 2014
MathSciNet review: 3168462
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Bannai-Ito polynomials are shown to arise as Racah coefficients for $ sl_{-1}(2)$. This Hopf algebra has four generators, including an involution, and is defined with both commutation and anticommutation relations. It is also equivalent to the parabosonic oscillator algebra. The coproduct is used to show that the Bannai-Ito algebra acts as the hidden symmetry algebra of the Racah problem for $ sl_{-1}(2)$. The Racah coefficients are recovered from a related Leonard pair.


References [Enhancements On Off] (What's this?)

  • [1] M. Arik and U. Kayserilioglu, The anticommutator spin algebra, its representations and quantum group invariance, Internat. J. Modern Phys. A 18 (2003), no. 27, 5039-5045. MR 2020304 (2004j:81072), https://doi.org/10.1142/S0217751X03015933
  • [2] Eiichi Bannai and Tatsuro Ito, Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA, 1984. MR 882540 (87m:05001)
  • [3] G.M.F. Brown.
    Totally bipartite/abipartite Leonard pairs and Leonard triples of Bannai/Ito type, Electron. J. Linear Algebra 26 (2013), 258-299. MR 3084644
  • [4] T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York, 1978. MR 0481884 (58 #1979)
  • [5] Brian Curtin, Modular Leonard triples, Linear Algebra Appl. 424 (2007), no. 2-3, 510-539. MR 2329491 (2008d:16045), https://doi.org/10.1016/j.laa.2007.02.024
  • [6] C. Daskaloyannis, K. Kanakoglou, and I. Tsohantjis, Hopf algebraic structure of the parabosonic and parafermionic algebras and paraparticle generalization of the Jordan-Schwinger map, J. Math. Phys. 41 (2000), no. 2, 652-660. MR 1737022 (2000m:17012), https://doi.org/10.1063/1.533157
  • [7] Charles F. Dunkl, Orthogonal polynomials of types $ A$ and $ B$ and related Calogero models, Comm. Math. Phys. 197 (1998), no. 2, 451-487. MR 1652751 (2000a:33021), https://doi.org/10.1007/s002200050460
  • [8] M. F. Gorodniĭ and G. B. Podkolzin, Irreducible representations of graded Lie algebras, Spectral theory of operators and infinite-dimensional analysis, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1984, pp. 66-77, iii (Russian). MR 817219 (87c:17015)
  • [9] Y. I. Granovskii and A. S. Zhedanov.
    Hidden symmetry of the Racah and Clebsch-Gordan problems for the quantum algebra $ sl_q(2)$.
    arXiv:hep-th/9304138, 1993.
  • [10] H. S. Green, A generalized method of field quantization, Physical Rev. (2) 90 (1953), 270-273. MR 0055215 (14,1046c)
  • [11] H.W. Huang.
    The classification of Leonard Triples of QRacah type. Linear Algebra Appl. 436 (2012), 1442-1472. MR 2890930
  • [12] Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw, Hypergeometric orthogonal polynomials and their $ q$-analogues, with a foreword by Tom H. Koornwinder, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. MR 2656096 (2011e:33029)
  • [13] N. Mukunda, E. C. G. Sudarshan, J. K. Sharma, and C. L. Mehta, Representations and properties of para-Bose oscillator operators. I. Energy position and momentum eigenstates, J. Math. Phys. 21 (1980), no. 9, 2386-2394. MR 585590 (81k:81033), https://doi.org/10.1063/1.524695
  • [14] V. L. Ostrovskiĭ and S. D. Silvestrov, Representations of real forms of the graded analogue of a Lie algebra, Ukraïn. Mat. Zh. 44 (1992), no. 11, 1518-1524 (Russian, with Russian and Ukrainian summaries); English transl., Ukrainian Math. J. 44 (1992), no. 11, 1395-1401 (1993). MR 1213895 (94c:17042), https://doi.org/10.1007/BF01071514
  • [15] M. Rosenblum.
    Generalized Hermite polynomials and the Bose-like oscillator calculus.
    In Non Self-Adjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994. MR 1320555 (96b:33005)
  • [16] Paul Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), no. 1-3, 149-203. MR 1826654 (2002h:15021), https://doi.org/10.1016/S0024-3795(01)00242-7
  • [17] Paul Terwilliger, Two relations that generalize the $ q$-Serre relations and the Dolan-Grady relations, Physics and combinatorics 1999 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 377-398. MR 1865045 (2003a:16044), https://doi.org/10.1142/9789812810199_0013
  • [18] P. Terwilliger and R. Vidunas.
    Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), no. 4, 411-426. MR 2114417 (2005k:05247)
  • [19] S. Tsujimoto, L. Vinet, and A. Zhedanov.
    Dual -1 Hahn polynomials: ``classical'' polynomials beyond the Leonard duality, Proc. Amer. Math. Soc. 141 (2013), no. 3, 959-970. MR 3003688
  • [20] Satoshi Tsujimoto, Luc Vinet, and Alexei Zhedanov, From $ sl_q(2)$ to a parabosonic Hopf algebra, SIGMA Symmetry Integrability Geom. Methods Appl. 7 (2011), Paper 093, 13. MR 2861183
  • [21] Satoshi Tsujimoto, Luc Vinet, and Alexei Zhedanov, Jordan algebras and orthogonal polynomials, J. Math. Phys. 52 (2011), no. 10, 103512, 8. MR 2894610, https://doi.org/10.1063/1.3653482
  • [22] Satoshi Tsujimoto, Luc Vinet, and Alexei Zhedanov, Dunkl shift operators and Bannai-Ito polynomials, Adv. Math. 229 (2012), no. 4, 2123-2158. MR 2880217, https://doi.org/10.1016/j.aim.2011.12.020
  • [23] Raimundas Vidūnas, Askey-Wilson relations and Leonard pairs, Discrete Math. 308 (2008), no. 4, 479-495. MR 2376472 (2009b:33026), https://doi.org/10.1016/j.disc.2007.03.037
  • [24] Luc Vinet and Alexei Zhedanov, A Bochner theorem for Dunkl polynomials, SIGMA Symmetry Integrability Geom. Methods Appl. 7 (2011), Paper 020, 9. MR 2804576 (2012f:33014), https://doi.org/10.3842/SIGMA.2011.020
  • [25] L. Vinet and A. Zhedanov.
    A limit $ q=-1$ for big q-Jacobi polynomials, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5491-5507. MR 2931336
  • [26] Luc Vinet and Alexei Zhedanov, A `missing' family of classical orthogonal polynomials, J. Phys. A 44 (2011), no. 8, 085201, 16. MR 2770369 (2012c:42065), https://doi.org/10.1088/1751-8113/44/8/085201
  • [27] A. S. Zhedanov, ``Hidden symmetry'' of Askey-Wilson polynomials, Teoret. Mat. Fiz. 89 (1991), no. 2, 190-204 (Russian, with English summary); English transl., Theoret. and Math. Phys. 89 (1991), no. 2, 1146-1157 (1992). MR 1151381 (93f:33019), https://doi.org/10.1007/BF01015906

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16T05, 17B80, 33C45, 33C47, 81R05

Retrieve articles in all journals with MSC (2010): 16T05, 17B80, 33C45, 33C47, 81R05


Additional Information

Vincent X. Genest
Affiliation: Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada, H3C 3J7
Email: genestvi@crm.umontreal.ca

Luc Vinet
Affiliation: Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada, H3C 3J7
Email: luc.vinet@umontreal.ca

Alexei Zhedanov
Affiliation: Donetsk Institute for Physics and Technology, Donetsk 83114, Ukraine
Email: zhedanov@yahoo.com

DOI: https://doi.org/10.1090/S0002-9939-2014-11970-8
Received by editor(s): May 18, 2012
Received by editor(s) in revised form: May 31, 2012, and June 13, 2012
Published electronically: February 18, 2014
Communicated by: Sergei K. Suslov
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society