Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 
 

 

A probabilistic approach to mixed boundary value problems for elliptic operators with singular coefficients


Authors: Zhen-Qing Chen and Tusheng Zhang
Journal: Proc. Amer. Math. Soc. 142 (2014), 2135-2149
MSC (2010): Primary 60H15; Secondary 93E20, 35R60
DOI: https://doi.org/10.1090/S0002-9939-2014-11907-1
Published electronically: March 13, 2014
MathSciNet review: 3182031
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we establish existence and uniqueness of solutions of a class of mixed boundary value problems for elliptic operators with singular coefficients. Our approach is probabilistic. The theory of Dirichlet forms plays an important role.


References [Enhancements On Off] (What's this?)

  • [1] Alano Ancona, First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, J. Anal. Math. 72 (1997), 45-92. MR 1482989 (98i:58212), https://doi.org/10.1007/BF02843153
  • [2] Richard F. Bass and Pei Hsu, Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, Ann. Probab. 19 (1991), no. 2, 486-508. MR 1106272 (92i:60142)
  • [3] Zhen Qing Chen, On reflecting diffusion processes and Skorokhod decompositions, Probab. Theory Related Fields 94 (1993), no. 3, 281-315. MR 1198650 (94b:60090), https://doi.org/10.1007/BF01199246
  • [4] Zhen-Qing Chen, Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4639-4679 (electronic). MR 1926893 (2003i:60127), https://doi.org/10.1090/S0002-9947-02-03059-3
  • [5] Zhen-Qing Chen, Analytic characterization of conditional gaugeability for non-local Feynman-Kac transforms, J. Funct. Anal. 202 (2003), no. 1, 226-246. MR 1994771 (2005c:60097), https://doi.org/10.1016/S0022-1236(02)00096-4
  • [6] Z.-Q. Chen, P. J. Fitzsimmons, K. Kuwae, and T.-S. Zhang, Stochastic calculus for symmetric Markov processes, Ann. Probab. 36 (2008), no. 3, 931-970. MR 2408579 (2009c:60211), https://doi.org/10.1214/07-AOP347
  • [7] Z.-Q. Chen, P. J. Fitzsimmons, K. Kuwae, and T.-S. Zhang, Perturbation of symmetric Markov processes, Probab. Theory Related Fields 140 (2008), no. 1-2, 239-275. MR 2357677 (2008m:60151), https://doi.org/10.1007/s00440-007-0065-2
  • [8] Zhen-Qing Chen and Masatoshi Fukushima, Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series, vol. 35, Princeton University Press, Princeton, NJ, 2012. MR 2849840 (2012m:60176)
  • [9] Zhen-Qing Chen and Tusheng Zhang, Time-reversal and elliptic boundary value problems, Ann. Probab. 37 (2009), no. 3, 1008-1043. MR 2537548 (2010j:60206), https://doi.org/10.1214/08-AOP427
  • [10] Z. Q. Chen and Z. Zhao, Diffusion processes and second order elliptic operators with singular coefficients for lower order terms, Math. Ann. 302 (1995), no. 2, 323-357. MR 1336339 (96e:60136), https://doi.org/10.1007/BF01444498
  • [11] Patrick J. Fitzsimmons, Even and odd continuous additive functionals, Dirichlet forms and stochastic processes (Beijing, 1993) de Gruyter, Berlin, 1995, pp. 139-154. MR 1366430 (97c:60191)
  • [12] Mark Freidlin, Functional integration and partial differential equations, Annals of Mathematics Studies, vol. 109, Princeton University Press, Princeton, NJ, 1985. MR 833742 (87g:60066)
  • [13] Masatoshi Fukushima, On a decomposition of additive functionals in the strict sense for a symmetric Markov process, Dirichlet forms and stochastic processes (Beijing, 1993) de Gruyter, Berlin, 1995, pp. 155-169. MR 1366431 (97k:60210)
  • [14] Masatoshi Fukushima, Yōichi Ōshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1994. MR 1303354 (96f:60126)
  • [15] W. D. Gerhard, The probabilistic solution of the Dirichlet problem for $ \frac 12\Delta +\langle a,\nabla \rangle +b$ with singular coefficients, J. Theoret. Probab. 5 (1992), no. 3, 503-520. MR 1176434 (93i:60141), https://doi.org/10.1007/BF01060432
  • [16] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190 (86c:35035)
  • [17] Konrad Gröger, A $ W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann. 283 (1989), no. 4, 679-687. MR 990595 (90d:35035), https://doi.org/10.1007/BF01442860
  • [18] Pavel Gyrya and Laurent Saloff-Coste, Neumann and Dirichlet heat kernels in inner uniform domains, Astérisque 336 (2011), viii+144 (English, with English and French summaries). MR 2807275 (2012m:35117)
  • [19] Pei Hsu, Probabilistic approach to the Neumann problem, Comm. Pure Appl. Math. 38 (1985), no. 4, 445-472. MR 792399 (86k:35033), https://doi.org/10.1002/cpa.3160380406
  • [20] Shizuo Kakutani, Two-dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo 20 (1944), 706-714. MR 0014647 (7,315b)
  • [21] Hiroshi Kunita, Sub-Markov semi-groups in Banach lattices, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), Univ. of Tokyo Press, Tokyo, 1970, pp. 332-343. MR 0267412 (42 #2314)
  • [22] John Lunt, T. J. Lyons, and T. S. Zhang, Integrability of functionals of Dirichlet processes, probabilistic representations of semigroups, and estimates of heat kernels, J. Funct. Anal. 153 (1998), no. 2, 320-342. MR 1614598 (99g:31012), https://doi.org/10.1006/jfan.1997.3182
  • [23] Zhi Ming Ma and Michael Röckner, Introduction to the theory of (nonsymmetric) Dirichlet forms, Universitext, Springer-Verlag, Berlin, 1992. MR 1214375 (94d:60119)
  • [24] Zhi Ming Ma and Ren Ming Song, Probabilistic methods in Schrödinger equations, Seminar on Stochastic Processes, 1989 (San Diego, CA, 1989) Progr. Probab., vol. 18, Birkhäuser Boston, Boston, MA, 1990, pp. 135-164. MR 1042345 (91h:35100)
  • [25] Shintaro Nakao, Stochastic calculus for continuous additive functionals of zero energy, Z. Wahrsch. Verw. Gebiete 68 (1985), no. 4, 557-578. MR 772199 (86c:60082), https://doi.org/10.1007/BF00535345
  • [26] Daniel W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 316-347. MR 960535 (90b:35071), https://doi.org/10.1007/BFb0084145
  • [27] Neil S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 265-308. MR 0369884 (51 #6113)
  • [28] X. Yang and T. Zhang, Estimates of heat kernels with Neumann boundary conditions,
    Potential Analysis 38 (2013), no. 2, 549-572. MR 3015364

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60H15, 93E20, 35R60

Retrieve articles in all journals with MSC (2010): 60H15, 93E20, 35R60


Additional Information

Zhen-Qing Chen
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
Email: zqchen@uw.edu

Tusheng Zhang
Affiliation: Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
Email: tusheng.zhang@manchester.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-2014-11907-1
Received by editor(s): March 14, 2012
Received by editor(s) in revised form: May 3, 2012, and June 25, 2012
Published electronically: March 13, 2014
Additional Notes: The first author’s research was partially supported by NSF Grants DMS-0906743 and DMR-1035196.
Communicated by: Mark M. Meerschaert
Article copyright: © Copyright 2014 Zhen-Qing Chen and Tusheng Zhang

American Mathematical Society