Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

The Frobenius functor and injective modules


Author: Thomas Marley
Journal: Proc. Amer. Math. Soc. 142 (2014), 1911-1923
MSC (2010): Primary 13H10; Secondary 13D45
DOI: https://doi.org/10.1090/S0002-9939-2014-11924-1
Published electronically: March 3, 2014
MathSciNet review: 3182010
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate commutative Noetherian rings of prime characteristic such that the Frobenius functor applied to any injective module is again injective. We characterize the class of one-dimensional local rings with this property and show that it includes all one-dimensional $ F$-pure rings. We also give a characterization of Gorenstein local rings in terms of $ \mathrm {Tor}_i^R(R^{f},E)$, where $ E$ is the injective hull of the residue field and $ R^{f}$ is the ring $ R$ whose right $ R$-module action is given by the Frobenius map.


References [Enhancements On Off] (What's this?)

  • [1] Yôichi Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), no. 1, 85-94. MR 692731 (84i:13015)
  • [2] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956 (95h:13020)
  • [3] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627 (99h:13020)
  • [4] Richard Fedder, $ F$-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461-480. MR 701505 (84h:13031), https://doi.org/10.2307/1999165
  • [5] David Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
  • [6] Hans-Bjørn Foxby, Injective modules under flat base change, Proc. Amer. Math. Soc. 50 (1975), 23-27. MR 0409439 (53 #13194)
  • [7] Shiro Goto, A problem on Noetherian local rings of characteristic $ p$, Proc. Amer. Math. Soc. 64 (1977), no. 2, 199-205. MR 0447212 (56 #5527)
  • [8] Shiro Goto and Keiichi Watanabe, The structure of one-dimensional $ F$-pure rings, J. Algebra 49 (1977), no. 2, 415-421. MR 0453729 (56 #11989)
  • [9] Jürgen Herzog, Ringe der Charakteristik $ p$ und Frobeniusfunktoren, Math. Z. 140 (1974), 67-78 (German). MR 0352081 (50 #4569)
  • [10] Der kanonische Modul eines Cohen-Macaulay-Rings. Seminar über die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester 1970/1971; Herausgegeben von Jürgen Herzog und Ernst Kunz, Lecture Notes in Mathematics, Vol. 238, Springer-Verlag, Berlin, 1971. MR 0412177 (54 #304)
  • [11] Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115-175. MR 0347810 (50 #311)
  • [12] Craig L. Huneke and Rodney Y. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), no. 2, 765-779. MR 1124167 (93m:13008), https://doi.org/10.2307/2154297
  • [13] Ernst Kunz, Characterizations of regular local rings for characteristic $ p$, Amer. J. Math. 91 (1969), 772-784. MR 0252389 (40 #5609)
  • [14] Srikanth Iyengar and Sean Sather-Wagstaff, G-dimension over local homomorphisms. Applications to the Frobenius endomorphism, Illinois J. Math. 48 (2004), no. 1, 241-272. MR 2048224 (2005c:13016)
  • [15] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273 (88h:13001)
  • [16] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47-119 (French). MR 0374130 (51 #10330)
  • [17] Paul Roberts, Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 103-106. MR 0399075 (53 #2926)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13H10, 13D45

Retrieve articles in all journals with MSC (2010): 13H10, 13D45


Additional Information

Thomas Marley
Affiliation: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0130
Email: tmarley1@unl.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-11924-1
Keywords: Frobenius map, injective module, canonical module
Received by editor(s): January 5, 2012
Received by editor(s) in revised form: February 28, 2012, June 13, 2012, and July 6, 2012
Published electronically: March 3, 2014
Communicated by: Irena Peeva
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society