Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nontriviality of the $ M$-degree of the $ A$-polynomial


Author: Hans U. Boden
Journal: Proc. Amer. Math. Soc. 142 (2014), 2173-2177
MSC (2010): Primary 57M27; Secondary 57M25, 57M05
DOI: https://doi.org/10.1090/S0002-9939-2014-11936-8
Published electronically: March 4, 2014
MathSciNet review: 3182034
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This note gives a proof that the $ A$-polynomial of any nontrivial knot in $ S^3$ has nontrivial $ M$-degree.


References [Enhancements On Off] (What's this?)

  • [1] H. U. Boden and C. L. Curtis, The $ SL_2({\mathbb{C}})$ Casson invariant for Dehn surgeries on two-bridge knots, Algebr. Geom. Topol. 12 (2012), no. 4, 2095-2126. MR 3020202
  • [2] Steven Boyer and Xingru Zhang, A proof of the finite filling conjecture, J. Differential Geom. 59 (2001), no. 1, 87-176. MR 1909249 (2003k:57007)
  • [3] Steven Boyer and Xingru Zhang, Every nontrivial knot in $ S^3$ has nontrivial $ A$-polynomial, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2813-2815 (electronic). MR 2146231 (2006g:57018), https://doi.org/10.1090/S0002-9939-05-07814-7
  • [4] J. C. Cha and C. Livingston, KnotInfo: Table of Knot Invariants, online at http://www.indiana.edu/$ \sim $knotinfo, January 31, 2012.
  • [5] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character varieties of $ 3$-manifolds, Invent. Math. 118 (1994), no. 1, 47-84. MR 1288467 (95g:57029), https://doi.org/10.1007/BF01231526
  • [6] D. Cooper and D. D. Long, Remarks on the $ A$-polynomial of a knot, J. Knot Theory Ramifications 5 (1996), no. 5, 609-628. MR 1414090 (97m:57004), https://doi.org/10.1142/S0218216596000357
  • [7] D. Cooper and D. D. Long, The $ A$-polynomial has ones in the corners, Bull. London Math. Soc. 29 (1997), no. 2, 231-238. MR 1426004 (98f:57026), https://doi.org/10.1112/S0024609396002251
  • [8] Marc Culler and Peter B. Shalen, Varieties of group representations and splittings of $ 3$-manifolds, Ann. of Math. (2) 117 (1983), no. 1, 109-146. MR 683804 (84k:57005), https://doi.org/10.2307/2006973
  • [9] Cynthia L. Curtis, An intersection theory count of the $ {\rm SL}_2({\mathbb{C}})$-representations of the fundamental group of a $ 3$-manifold, Topology 40 (2001), no. 4, 773-787. MR 1851563 (2002k:57022), https://doi.org/10.1016/S0040-9383(99)00083-X
  • [10] Nathan M. Dunfield and Stavros Garoufalidis, Non-triviality of the $ A$-polynomial for knots in $ S^3$, Algebr. Geom. Topol. 4 (2004), 1145-1153 (electronic). MR 2113900 (2005i:57004), https://doi.org/10.2140/agt.2004.4.1145
  • [11] Stavros Garoufalidis and Thomas W. Mattman, The $ A$-polynomial of the $ (-2,3,3+2n)$ pretzel knots, New York J. Math. 17 (2011), 269-279. MR 2811064 (2012f:57026)
  • [12] Jim Hoste and Patrick D. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications 13 (2004), no. 2, 193-209. MR 2047468 (2005c:57006), https://doi.org/10.1142/S0218216504003081
  • [13] M. Ishikawa, T. Mattman, and K. Shimokawa, Tangle sums and factorization of $ A$-polynomials, 2011 preprint, arXiv: math.GT 1107.2640.
  • [14] P. B. Kronheimer and T. S. Mrowka, Dehn surgery, the fundamental group and SU$ (2)$, Math. Res. Lett. 11 (2004), no. 5-6, 741-754. MR 2106239 (2005k:57018)
  • [15] Thomas W. Mattman, The Culler-Shalen seminorms of the $ (-2,3,n)$ pretzel knot, J. Knot Theory Ramifications 11 (2002), no. 8, 1251-1289. MR 1949779 (2003m:57019), https://doi.org/10.1142/S0218216502002232
  • [16] K. Petersen, $ A$-polynomials of a family of two-bridge knots, 2012 preprint.
  • [17] Naoko Tamura and Yoshiyuki Yokota, A formula for the $ A$-polynomials of $ (-2,3,1+2n)$-pretzel knots, Tokyo J. Math. 27 (2004), no. 1, 263-273. MR 2060090 (2005e:57033), https://doi.org/10.3836/tjm/1244208490
  • [18] Peter B. Shalen, Representations of 3-manifold groups, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 955-1044. MR 1886685 (2003d:57002)
  • [19] W. A. Stein et al., Sage Mathematics Software (Version 4.8), The Sage Development Team, 2012, http://www.sagemath.org.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M27, 57M25, 57M05

Retrieve articles in all journals with MSC (2010): 57M27, 57M25, 57M05


Additional Information

Hans U. Boden
Affiliation: Department of Mathematics and Statistics, McMaster University, Hamilton, ON, L8S 4K1 Canada
Email: boden@mcmaster.ca

DOI: https://doi.org/10.1090/S0002-9939-2014-11936-8
Keywords: Knot, A-polynomial, character variety.
Received by editor(s): March 22, 2012
Received by editor(s) in revised form: March 30, 2012, and July 6, 2012
Published electronically: March 4, 2014
Additional Notes: The author was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society