Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

For graph maps, one scrambled pair implies Li-Yorke chaos


Authors: Sylvie Ruette and L’ubomír Snoha
Journal: Proc. Amer. Math. Soc. 142 (2014), 2087-2100
MSC (2010): Primary 37E25; Secondary 37B05, 54H20
DOI: https://doi.org/10.1090/S0002-9939-2014-11937-X
Published electronically: March 7, 2014
MathSciNet review: 3182027
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a dynamical system $ (X,f)$, $ X$ being a compact metric space with metric $ d$ and $ f$ being a continuous map $ X\to X$, a set $ S\subseteq X$ is scrambled if every pair $ (x,y)$ of distinct points in $ S$ is scrambled, i.e.,

$\displaystyle \liminf _{n\to +\infty }d(f^n(x),f^n(y))=0 \hbox { and } \limsup _{n\to +\infty }d(f^n(x),f^n(y))>0.$

The system $ (X,f)$ is Li-Yorke chaotic if it has an uncountable scrambled set. It is known that for interval and circle maps, the existence of a scrambled pair implies Li-Yorke chaos, in fact, the existence of a Cantor scrambled set. We prove that the same result holds for graph maps. We further show that on compact countable metric spaces one scrambled pair implies the existence of an infinite scrambled set.

References [Enhancements On Off] (What's this?)

  • [1] Ll. Alsedà, M. A. del Río, and J. A. Rodríguez, Transitivity and dense periodicity for graph maps, J. Difference Equ. Appl. 9 (2003), no. 6, 577-598. MR 1978125 (2004d:37061), https://doi.org/10.1080/1023619021000040515
  • [2] François Blanchard, Fabien Durand, and Alejandro Maass, Constant-length substitutions and countable scrambled sets, Nonlinearity 17 (2004), no. 3, 817-833. MR 2057129 (2005j:37013), https://doi.org/10.1088/0951-7715/17/3/005
  • [3] François Blanchard, Eli Glasner, Sergiĭ Kolyada, and Alejandro Maass, On Li-Yorke pairs, J. Reine Angew. Math. 547 (2002), 51-68. MR 1900136 (2003g:37014), https://doi.org/10.1515/crll.2002.053
  • [4] François Blanchard, Wen Huang, and L'ubomír Snoha, Topological size of scrambled sets, Colloq. Math. 110 (2008), no. 2, 293-361. MR 2353910 (2008j:37013), https://doi.org/10.4064/cm110-2-3
  • [5] L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR 1176513 (93g:58091)
  • [6] A. M. Blokh, ``Spectral expansion'' for piecewise monotone mappings of an interval, Uspekhi Mat. Nauk 37 (1982), no. 3(225), 175-176 (Russian). MR 659433 (84b:58092)
  • [7] A. M. Blokh, On transitive mappings of one-dimensional branched manifolds, Differential-difference equations and problems of mathematical physics (Russian), Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1984, pp. 3-9, 131. MR 884346 (88b:58111)
  • [8] A. M. Blokh, Dynamical systems on one-dimensional branched manifolds. I, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 46 (1986), 8-18 (Russian); English transl., J. Soviet Math. 48 (1990), no. 5, 500-508. MR 865783 (88j:58053), https://doi.org/10.1007/BF01095616
  • [9] A. M. Blokh, Dynamical systems on one-dimensional branched manifolds. II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 47 (1987), 67-77 (Russian); English transl., J. Soviet Math. 48 (1990), no. 6, 668-674. MR 916445 (89i:58056), https://doi.org/10.1007/BF01094721
  • [10] A. M. Blokh, Dynamical systems on one-dimensional branched manifolds. III, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 48 (1987), 32-46 (Russian); English transl., J. Soviet Math. 49 (1990), no. 2, 875-883. MR 916457 (89i:58057), https://doi.org/10.1007/BF02205632
  • [11] A. M. Blokh, The connection between entropy and transitivity for one-dimensional mappings, Uspekhi Mat. Nauk 42 (1987), no. 5(257), 209-210 (Russian). MR 928783 (89g:58117)
  • [12] Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473 (35 #7306)
  • [13] G. L. Forti, L. Paganoni, and J. Smítal, Strange triangular maps of the square, Bull. Austral. Math. Soc. 51 (1995), no. 3, 395-415. MR 1331432 (96d:54036), https://doi.org/10.1017/S0004972700014222
  • [14] Juan Luis García Guirao and Marek Lampart, Li and Yorke chaos with respect to the cardinality of the scrambled sets, Chaos Solitons Fractals 24 (2005), no. 5, 1203-1206. MR 2123268 (2006a:37014), https://doi.org/10.1016/j.chaos.2004.09.103
  • [15] Roman Hric and Michal Málek, Omega limit sets and distributional chaos on graphs, Topology Appl. 153 (2006), no. 14, 2469-2475. MR 2243726 (2008c:37029), https://doi.org/10.1016/j.topol.2005.09.007
  • [16] Wen Huang and Xiangdong Ye, Homeomorphisms with the whole compacta being scrambled sets, Ergodic Theory Dynam. Systems 21 (2001), no. 1, 77-91. MR 1826661 (2002d:37020), https://doi.org/10.1017/S0143385701001079
  • [17] Wen Huang and Xiangdong Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appl. 117 (2002), no. 3, 259-272. MR 1874089 (2003b:37017), https://doi.org/10.1016/S0166-8641(01)00025-6
  • [18] K. Janková and J. Smítal, A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), no. 2, 283-292. MR 854575 (87k:58178), https://doi.org/10.1017/S0004972700010157
  • [19] Milan Kuchta, Characterization of chaos for continuous maps of the circle, Comment. Math. Univ. Carolin. 31 (1990), no. 2, 383-390. MR 1077909 (92f:58112)
  • [20] M. Kuchta and J. Smítal, Two-point scrambled set implies chaos, European Conference on Iteration Theory (Caldes de Malavella, 1987), World Sci. Publ., Teaneck, NJ, 1989, pp. 427-430. MR 1085314 (91j:58112)
  • [21] Jaume Llibre and Michał Misiurewicz, Horseshoes, entropy and periods for graph maps, Topology 32 (1993), no. 3, 649-664. MR 1231969 (94k:58113), https://doi.org/10.1016/0040-9383(93)90014-M
  • [22] Jie-Hua Mai and Song Shao, Spaces of $ \omega $-limit sets of graph maps, Fund. Math. 196 (2007), no. 1, 91-100. MR 2338540 (2008h:37043), https://doi.org/10.4064/fm196-1-2
  • [23] Jie-Hua Mai and Song Shao, The structure of graph maps without periodic points, Topology Appl. 154 (2007), no. 14, 2714-2728. MR 2340954 (2008i:37082), https://doi.org/10.1016/j.topol.2007.05.005
  • [24] M. Rees, A minimal positive entropy homeomorphism of the $ 2$-torus, J. London Math. Soc. (2) 23 (1981), no. 3, 537-550. MR 616561 (82h:58045), https://doi.org/10.1112/jlms/s2-23.3.537
  • [25] P. V. S. P. Saradhi,
    Sets of periods of continuous self maps on some metric spaces.
    PhD thesis, University of Hyderabad, 1987.
  • [26] O. M. Šarkovskiĭ, On attracting and attracted sets, Dokl. Akad. Nauk SSSR 160 (1965), 1036-1038 (Russian). MR 0188992 (32 #6419)
  • [27] J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), no. 1, 269-282. MR 849479 (87m:58107), https://doi.org/10.2307/2000468
  • [28] S. T. Stefanov, Problem no. 10476, Amer. Math. Monthly 102 (1995), no. 8, 746; Solution in Amer. Math. Monthly 105 (1998), no. 4, 370. MR 1542735; MR 1543223
  • [29] Benjamin Weiss, Topological transitivity and ergodic measures, Math. Systems Theory 5 (1971), 71-75. MR 0296928 (45 #5987)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37E25, 37B05, 54H20

Retrieve articles in all journals with MSC (2010): 37E25, 37B05, 54H20


Additional Information

Sylvie Ruette
Affiliation: Laboratoire de Mathématiques, Bâtiment 425, CNRS UMR 8628, Université Paris-Sud 11, 91405 Orsay cedex, France
Email: Sylvie.Ruette@math.u-psud.fr

L’ubomír Snoha
Affiliation: Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
Email: Lubomir.Snoha@umb.sk

DOI: https://doi.org/10.1090/S0002-9939-2014-11937-X
Keywords: Scrambled pair, scrambled set, Li-Yorke chaos, graph, countable metric space
Received by editor(s): May 24, 2012
Received by editor(s) in revised form: July 11, 2012
Published electronically: March 7, 2014
Additional Notes: Most of this work was done while the second author was visiting Université Paris-Sud 11 at Orsay. The invitation and the kind hospitality of this institution are gratefully acknowledged. The second author was also partially supported by VEGA grant 1/0978/11 and by the Slovak Research and Development Agency under contract No. APVV-0134-10.
Dedicated: Dedicated to Jaroslav Smítal on the occasion of his 70th birthday
Communicated by: Yingfei Yi
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society