Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On positive type initial profiles for the KdV equation


Authors: Sergei Grudsky and Alexei Rybkin
Journal: Proc. Amer. Math. Soc. 142 (2014), 2079-2086
MSC (2010): Primary 34B20, 37K15, 47B35
DOI: https://doi.org/10.1090/S0002-9939-2014-11943-5
Published electronically: March 10, 2014
MathSciNet review: 3182026
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the KdV flow evolves any real locally integrable initial profile $ q$ of the form $ q=r^{\prime }+r^{2}$, where $ r\in L_{\operatorname {loc}}^{2}$, $ r\vert _{\mathbb{R}_{+}}=0$ into a meromorphic function with no real poles.


References [Enhancements On Off] (What's this?)

  • [1] A. Böttcher, S. Grudsky, and I. Spitkovsky, Toeplitz operators with frequency modulated semi-almost periodic symbols, J. Fourier Anal. Appl. 7 (2001), no. 5, 523-535. MR 1845102 (2002e:47029), https://doi.org/10.1007/BF02511224
  • [2] Albrecht Böttcher and Bernd Silbermann, Analysis of Toeplitz operators, 2nd ed., prepared jointly with Alexei Karlovich, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. MR 2223704 (2007k:47001)
  • [3] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness for KdV and modified KdV on $ \mathbb{R}$ and $ \mathbb{T}$, J. Amer. Math. Soc. 16 (2003), no. 3, 705-749 (electronic). MR 1969209 (2004c:35352), https://doi.org/10.1090/S0894-0347-03-00421-1
  • [4] Vladimir Dybin and Sergei M. Grudsky, Introduction to the theory of Toeplitz operators with infinite index, translated from the Russian by Andrei Iacob, Operator Theory: Advances and Applications, vol. 137, Birkhäuser Verlag, Basel, 2002. MR 1942445 (2003j:47031)
  • [5] Iryna Egorova, Katrin Grunert, and Gerald Teschl, On the Cauchy problem for the Korteweg-de Vries equation with steplike finite-gap initial data. I. Schwartz-type perturbations, Nonlinearity 22 (2009), no. 6, 1431-1457. MR 2507328 (2010j:35447), https://doi.org/10.1088/0951-7715/22/6/009
  • [6] Sergei M. Grudsky, Toeplitz operators and the modelling of oscillating discontinuities with the help of Blaschke products, Problems and methods in mathematical physics (Chemnitz, 1999) Oper. Theory Adv. Appl., vol. 121, Birkhäuser, Basel, 2001, pp. 162-193. MR 1847211 (2002e:47033)
  • [7] Thomas Kappeler, Peter Perry, Mikhail Shubin, and Peter Topalov, The Miura map on the line, Int. Math. Res. Not. 50 (2005), 3091-3133. MR 2189502 (2006k:37191), https://doi.org/10.1155/IMRN.2005.3091
  • [8] Nikolai K. Nikolski, Operators, functions, and systems: an easy reading, Vol. 1. Hardy, Hankel, and Toeplitz, translated from the French by Andreas Hartmann, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002. MR 1864396 (2003i:47001a)
  • [9] V. B. Matveev, Positons: slowly decreasing analogues of solitons, Teoret. Mat. Fiz. 131 (2002), no. 1, 44-61 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 131 (2002), no. 1, 483-497. MR 1931054 (2003h:37132), https://doi.org/10.1023/A:1015149618529
  • [10] Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR 1949210 (2004e:47040)
  • [11] Alexei Rybkin, Meromorphic solutions to the KdV equation with non-decaying initial data supported on a left half line, Nonlinearity 23 (2010), no. 5, 1143-1167. MR 2630095 (2011i:35223), https://doi.org/10.1088/0951-7715/23/5/007
  • [12] Alexei Rybkin, The Hirota $ \tau $-function and well-posedness of the KdV equation with an arbitrary step-like initial profile decaying on the right half line, Nonlinearity 24 (2011), no. 10, 2953-2990. MR 2842104 (2012i:37118), https://doi.org/10.1088/0951-7715/24/10/015
  • [13] Terence Tao, Nonlinear dispersive equations, Local and global analysis, CBMS Regional Conference Series in Mathematics, vol. 106, published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 2006. MR 2233925 (2008i:35211)
  • [14] Gerald Teschl, Mathematical methods in quantum mechanics. With applications to Schrödinger operators, Graduate Studies in Mathematics, vol. 99, American Mathematical Society, Providence, RI, 2009. MR 2499016 (2010h:81002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34B20, 37K15, 47B35

Retrieve articles in all journals with MSC (2010): 34B20, 37K15, 47B35


Additional Information

Sergei Grudsky
Affiliation: Departamento de Matematicas, CINVESTAV del I.P.N. Aportado Postal 14-740, 07000 Mexico, D.F., Mexico
Email: grudsky@math.cinvestav.mx

Alexei Rybkin
Affiliation: Department of Mathematics and Statistics, University of Alaska Fairbanks, P.O. Box 756660, Fairbanks, Alaska 99775
Email: arybkin@alaska.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-11943-5
Keywords: KdV equation, Titchmarsh-Weyl $m$-function, Hankel operators, Miura map
Received by editor(s): July 10, 2012
Published electronically: March 10, 2014
Additional Notes: The first author was partially supported by PROMEP (México) via “Proyecto de Redes” and by CONACYT grant 102800
The second author was supported in part by the NSF under grant DMS 1009673
Communicated by: James E. Colliander
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society