Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Codes and the Cartier operator

Author: Alain Couvreur
Journal: Proc. Amer. Math. Soc. 142 (2014), 1983-1996
MSC (2010): Primary 11G20, 14G50, 94B27
Published electronically: March 14, 2014
MathSciNet review: 3182017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we present a new construction of codes from algebraic curves. Given a curve over a non-prime finite field, the obtained codes are defined over a subfield. We call them Cartier codes since their construction involves the Cartier operator. This new class of codes can be regarded as a natural geometric generalisation of classical Goppa codes. In particular, we prove that a well-known property satisfied by classical Goppa codes extends naturally to Cartier codes. We prove general lower bounds for the dimension and the minimum distance of these codes and compare our construction with a classical one: the subfield subcodes of Algebraic Geometry codes. We prove that every Cartier code is contained in a subfield subcode of an Algebraic Geometry code and that the two constructions have similar asymptotic performances.

We also show that some known results on subfield subcodes of Algebraic Geometry codes can be proved nicely by using properties of the Cartier operator and that some known bounds on the dimension of subfield subcodes of Algebraic Geometry codes can be improved thanks to Cartier codes and the Cartier operator.

References [Enhancements On Off] (What's this?)

  • [1] D. J. Bernstein, T. Lange, and C. Peters.
    Wild McEliece.
    Cryptology ePrint Archive, Report 2010/410, 2010.
  • [2] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993), J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. MR 1484478,
  • [3] Pierre Cartier, Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris 244 (1957), 426-428 (French). MR 0084497 (18,870b)
  • [4] Pierre Cartier, Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. Math. France 86 (1958), 177-251 (French). MR 0106223 (21 #4957)
  • [5] V. D. Goppa, Codes on algebraic curves, Dokl. Akad. Nauk SSSR 259 (1981), no. 6, 1289-1290 (Russian). MR 628795 (82k:94017)
  • [6] Tom Høholdt and Ruud Pellikaan, On the decoding of algebraic-geometric codes, Special issue on algebraic geometry codes, IEEE Trans. Inform. Theory 41 (1995), no. 6, 1589-1614. MR 1391018 (97a:94008),
  • [7] Yasutaka Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 721-724 (1982). MR 656048 (84c:14016)
  • [8] G. L. Katsman and M. A. Tsfasman, A remark on algebraic geometric codes, Representation theory, group rings, and coding theory, Contemp. Math., vol. 93, Amer. Math. Soc., Providence, RI, 1989, pp. 197-199. MR 1003354 (90e:94028),
  • [9] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. I, North-Holland Mathematical Library, Vol. 16, North-Holland Publishing Co., Amsterdam, 1977. MR 0465509 (57 #5408a)
  • [10] C. S. Seshadri.
    L'opération de Cartier. Applications.
    In Variétés de Picard, volume 4 of Séminaire Claude Chevalley. Secrétariat Mathématiques, Paris, 1958-1959.
  • [11] Alexei N. Skorobogatov, The parameters of subcodes of algebraic-geometric codes over prime subfields, Applied algebra, algebraic algorithms, and error-correcting codes (Toulouse, 1989), Discrete Appl. Math. 33 (1991), no. 1-3, 205-214. MR 1137746 (93e:94017),
  • [12] Henning Stichtenoth, On the dimension of subfield subcodes, IEEE Trans. Inform. Theory 36 (1990), no. 1, 90-93. MR 1043283 (90m:94041),
  • [13] Henning Stichtenoth, Algebraic function fields and codes, 2nd ed., Graduate Texts in Mathematics, vol. 254, Springer-Verlag, Berlin, 2009. MR 2464941 (2010d:14034)
  • [14] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa, Further results on Goppa codes and their applications to constructing efficient binary codes, IEEE Trans. Information Theory IT-22 (1976), no. 5, 518-526. MR 0479662 (57 #19083)
  • [15] Michael Tsfasman, Serge Vlăduţ, and Dmitry Nogin, Algebraic geometric codes: basic notions, Mathematical Surveys and Monographs, vol. 139, American Mathematical Society, Providence, RI, 2007. MR 2339649 (2009a:94055)
  • [16] M. A. Tsfasman, S. G. Vlăduţ, and Th. Zink, Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound, Math. Nachr. 109 (1982), 21-28. MR 705893 (85i:11108),
  • [17] Michael Wirtz, On the parameters of Goppa codes, Coding techniques and coding theory, IEEE Trans. Inform. Theory 34 (1988), no. 5, 1341-1343. MR 987679 (90e:94031),

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11G20, 14G50, 94B27

Retrieve articles in all journals with MSC (2010): 11G20, 14G50, 94B27

Additional Information

Alain Couvreur
Affiliation: INRIA Saclay Île-de-France – CNRS LIX, UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France

Keywords: Algebraic Geometry codes, differential forms, Cartier operator, subfield subcodes, classical Goppa codes
Received by editor(s): June 21, 2012
Received by editor(s) in revised form: July 23, 2012
Published electronically: March 14, 2014
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society