Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


The linear isometry group of the Gurarij space is universal

Author: Itaï Ben Yaacov
Journal: Proc. Amer. Math. Soc. 142 (2014), 2459-2467
MSC (2010): Primary 46B99, 22A05, 54D35
Published electronically: March 12, 2014
MathSciNet review: 3195767
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a construction of the Gurarij space analogous to Katětov's construction of the Urysohn space. The adaptation of Katětov's technique uses a generalisation of the Arens-Eells enveloping space to metric space with a distinguished normed subspace. This allows us to give a positive answer to a question of Uspenskij as to whether the linear isometry group of the Gurarij space is a universal Polish group.

References [Enhancements On Off] (What's this?)

  • [Ben] Itaï Ben Yaacov, Fraïssé limits of metric structures, submitted, arXiv:1203.4459.
  • [BH] Itaï Ben Yaacov and C. Ward Henson, Generic orbits and type isolation in the Gurarij space, research notes.
  • [FJ03] Richard J. Fleming and James E. Jamison, Isometries on Banach spaces: function spaces, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 129, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1957004 (2004j:46030)
  • [Gur66] V. I. Gurariĭ, Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sibirsk. Mat. Ž. 7 (1966), 1002-1013 (Russian). MR 0200697 (34 #585)
  • [Kat88] M. Katětov, On universal metric spaces (Prague, 1986), Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 323-330. MR 952617 (89k:54066)
  • [KS] Wiesław Kubiś and Sławomir Solecki, A proof of uniqueness of the Gurariĭ space, Israel Journal of Mathematics 195 (2013), no. 1, 449-456. MR 3101256
  • [Lus76] Wolfgang Lusky, The Gurarij spaces are unique, Arch. Math. (Basel) 27 (1976), no. 6, 627-635. MR 0433198 (55 #6177)
  • [Pes99] Vladimir Pestov, Topological groups: where to from here?, Proceedings of the 14th Summer Conference on General Topology and its Applications (Brookville, NY, 1999), 1999, pp. 421-502 (2001). MR 1876385 (2003a:22001)
  • [Usp90] Vladimir V. Uspenskij, On the group of isometries of the Urysohn universal metric
    , Commentationes Mathematicae Universitatis Carolinae 31 (1990), no. 1, 181-182. MR 1056185 (91f:22003)
  • [Usp08] Vladimir V. Uspenskij, On subgroups of minimal topological groups, Topology Appl. 155 (2008), no. 14, 1580-1606. MR 2435151 (2009d:22003),
  • [Wea99] Nik Weaver, Lipschitz algebras, World Scientific Publishing Co. Inc., River Edge, NJ, 1999. MR 1832645 (2002g:46002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B99, 22A05, 54D35

Retrieve articles in all journals with MSC (2010): 46B99, 22A05, 54D35

Additional Information

Itaï Ben Yaacov
Affiliation: Université Claude Bernard – Lyon 1, Institut Camille Jordan, CNRS UMR 5208, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Keywords: Gurarij space, Kat\v{e}tov function, Arens-Eells space, universal Polish group
Received by editor(s): June 27, 2012
Received by editor(s) in revised form: July 8, 2012, July 10, 2012, and July 31, 2012
Published electronically: March 12, 2014
Additional Notes: The author’s research was supported by the Institut Universitaire de France and ANR contract GruPoLoCo (ANR-11-JS01-008).
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society