Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bounding patterns for the cohomology of vector bundles


Authors: Markus Brodmann, Andri Cathomen and Bernhard Keller
Journal: Proc. Amer. Math. Soc. 142 (2014), 2327-2336
MSC (2010): Primary 13D45, 13D07; Secondary 14B15
DOI: https://doi.org/10.1090/S0002-9939-2014-12142-3
Published electronically: March 19, 2014
MathSciNet review: 3195757
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ t \in \mathbb{N}$, let $ K$ be a field and let $ \mathcal {V}^t_K$ denote the class of all algebraic vector bundles over the projective space $ \mathbb{P}^t_K$.

The cohomology table of a bundle $ \mathcal {E} \in \mathcal {V}^t_K$ is defined as the family of non-negative integers $ h_{\mathcal {E}}:= \big (h^i(\mathbb{P}^t_K,\mathcal {E}(n))\big )_{(i,n) \in \mathbb{N}_0 \times \mathbb{Z}}$.

A set $ \mathbb{S} \subseteq \{0,\ldots ,t\}\times \mathbb{Z}$ is said to be a bounding pattern for the cohomology of vector bundles over $ \mathbb{P}^t_K$ if for each family $ (h^{(i,n)})_{(i,n) \in \mathbb{S}}$ of non-negative integers, the set of cohomology tables

$\displaystyle \{h_{\mathcal {E}} \mid \mathcal {E}\in \mathcal {V}^t_K : \ h^i_{\mathcal {E}}(n) \leq h^{(i,n)}$$\displaystyle \mbox { for all} \ (i,n) \in \mathbb{S}\}$

is finite. Our main result says that this is the case if and only if $ \mathbb{S}$ contains a quasi-diagonal of width $ t$, that is, a set of the form

$\displaystyle \{(i,n_i)\vert \ i=0,\ldots ,t\}$$\displaystyle \mbox { with integers } n_0> n_1 > \cdots > n_t.$


References [Enhancements On Off] (What's this?)

  • [1] M. Brodmann and M. Hellus, Cohomological patterns of coherent sheaves over projective schemes, J. Pure Appl. Algebra 172 (2002), no. 2-3, 165-182. MR 1906872 (2003f:13017), https://doi.org/10.1016/S0022-4049(01)00144-X
  • [2] Markus Brodmann, Maryam Jahangiri, and Cao Huy Linh, Castelnuovo-Mumford regularity of deficiency modules, J. Algebra 322 (2009), no. 8, 2816-2838. MR 2560904 (2011d:13016), https://doi.org/10.1016/j.jalgebra.2009.06.027
  • [3] Markus Brodmann, Maryam Jahangiri, and Cao Huy Linh, Boundedness of cohomology, J. Algebra 323 (2010), no. 2, 458-472. MR 2564850 (2011a:13035), https://doi.org/10.1016/j.jalgebra.2009.07.032
  • [4] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627 (99h:13020)
  • [5] M. P. Brodmann and R. Y. Sharp, Local cohomology, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 136, Cambridge University Press, Cambridge, 2013. An algebraic introduction with geometric applications. MR 3014449
  • [6] A. Cathomen, Zur Diversität der Kohomologietafeln lokal freier Moduln, Master Thesis, University of Zürich (2010).
  • [7] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121-138 (French). MR 0087176 (19,315b)
  • [8] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [9] B. Keller, Endlichkeit der Kohomologie lokal freier Moduln, Master Thesis, University of Zürich (2010).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13D45, 13D07, 14B15

Retrieve articles in all journals with MSC (2010): 13D45, 13D07, 14B15


Additional Information

Markus Brodmann
Affiliation: University of Zürich, Institute of Mathematics, Winterthurerstrasse 190, 8057 Zürich, Switzerland
Email: brodmann@math.uzh.ch

Andri Cathomen
Affiliation: University of Zürich, Institute of Mathematics, Winterthurerstrasse 190, 8057 Zürich, Switzerland
Email: a.cathomen@gmail.com

Bernhard Keller
Affiliation: University of Zürich, Institute of Mathematics, Winterthurerstrasse 190, 8057 Zürich, Switzerland
Email: benikeller@access.uzh.ch

DOI: https://doi.org/10.1090/S0002-9939-2014-12142-3
Keywords: Algebraic vector bundles, boundedness of cohomology, cohomology table
Received by editor(s): August 2, 2012
Published electronically: March 19, 2014
Communicated by: Irena Peeva
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society