Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Quasi-convex free polynomials


Authors: S. Balasubramanian and S. McCullough
Journal: Proc. Amer. Math. Soc. 142 (2014), 2581-2591
MSC (2010): Primary 15A24, 47A63, 08B20
DOI: https://doi.org/10.1090/S0002-9939-2014-11984-8
Published electronically: May 13, 2014
MathSciNet review: 3209314
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathbb{R}\langle x \rangle $ denote the ring of polynomials in $ g$ freely noncommuting variables $ x=(x_1,\dots ,x_g)$. There is a natural involution $ *$ on $ \mathbb{R}\langle x \rangle $ determined by $ x_j^*=x_j$ and $ (pq)^*=q^* p^*$, and a free polynomial $ p\in \mathbb{R}\langle x \rangle $ is symmetric if it is invariant under this involution. If $ X=(X_1,\dots ,X_g)$ is a $ g$ tuple of symmetric $ n\times n$ matrices, then the evaluation $ p(X)$ is naturally defined and further $ p^*(X)=p(X)^*$. In particular, if $ p$ is symmetric, then $ p(X)^*=p(X)$. The main result of this article says if $ p$ is symmetric, $ p(0)=0$ and for each $ n$ and each symmetric positive definite $ n\times n$ matrix $ A$ the set $ \{X:A-p(X)\succ 0\}$ is convex, then $ p$ has degree at most two and is itself convex, or $ -p$ is a hermitian sum of squares.


References [Enhancements On Off] (What's this?)

  • [1] Joseph A. Ball, Gilbert Groenewald, and Tanit Malakorn, Structured noncommutative multidimensional linear systems, SIAM J. Control Optim. 44 (2005), no. 4, 1474-1528. MR 2178040 (2006j:93035), https://doi.org/10.1137/S0363012904443750
  • [2] Jakob Cimprič, Noncommutative Positivstellensätze for pairs representation-vector, Positivity 15 (2011), no. 3, 481-495. MR 2832601 (2012k:16099), https://doi.org/10.1007/s11117-010-0098-0
  • [3] Harry Dym, William Helton, and Scott McCullough, Irreducible noncommutative defining polynomials for convex sets have degree four or less, Indiana Univ. Math. J. 56 (2007), no. 3, 1189-1231. MR 2333470 (2008d:47033), https://doi.org/10.1512/iumj.2007.56.2904
  • [4] Harry Dym, J. William Helton, Scott McCullough, Non-commutative Varieties with Curvature having Bounded Signature. Illinois J. Math. 55 (2011), no. 2, 427-464. MR 3020690
  • [5] Harry Dym, J. William Helton, and Scott McCullough, The Hessian of a noncommutative polynomial has numerous negative eigenvalues, J. Anal. Math. 102 (2007), 29-76. MR 2346553 (2008k:47010), https://doi.org/10.1007/s11854-007-0016-y
  • [6] Edward G. Effros and Soren Winkler, Matrix convexity: operator analogues of the bipolar and Hahn-Banach theorems, J. Funct. Anal. 144 (1997), no. 1, 117-152. MR 1430718 (98e:46066), https://doi.org/10.1006/jfan.1996.2958
  • [7] J. William Helton, ``Positive'' noncommutative polynomials are sums of squares, Ann. of Math. (2) 156 (2002), no. 2, 675-694. MR 1933721 (2003k:12002), https://doi.org/10.2307/3597203
  • [8] Damon M. Hay, J. William Helton, Adrian Lim, and Scott McCullough, Non-commutative partial matrix convexity, Indiana Univ. Math. J. 57 (2008), no. 6, 2815-2842. MR 2483003 (2010b:47036), https://doi.org/10.1512/iumj.2008.57.3638
  • [9] J. William Helton and Scott McCullough, Every convex free basic semi-algebraic set has an LMI representation, Ann. of Math. (2) 176 (2012), no. 2, 979-1013. MR 2950768
  • [10] J. William Helton and Scott McCullough, Convex noncommutative polynomials have degree two or less, SIAM J. Matrix Anal. Appl. 25 (2004), no. 4, 1124-1139. MR 2081134 (2005e:47043), https://doi.org/10.1137/S0895479803421999
  • [11] J. William Helton, Scott McCullough, and Mihai Putinar, Strong majorization in a free $ \ast $-algebra, Math. Z. 255 (2007), no. 3, 579-596. MR 2270289 (2008k:47011), https://doi.org/10.1007/s00209-006-0032-0
  • [12] J. William Helton, Scott McCullough, Mihai Putinar, and Victor Vinnikov, Convex matrix inequalities versus linear matrix inequalities, IEEE Trans. Automat. Control 54 (2009), no. 5, 952-964. MR 2518108 (2010f:52013), https://doi.org/10.1109/TAC.2009.2017087
  • [13] Dmitry Kaliuzhnyi-Verbovetskyi and Victor Vinnikov, work in progress.
  • [14] Mauricio C. de Oliveira, J. William Helton, Scott A. McCullough, and Mihai Putinar, Engineering systems and free semi-algebraic geometry, Emerging applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New York, 2009, pp. 17-61. MR 2500463 (2010d:93045), https://doi.org/10.1007/978-0-387-09686-5_2
  • [15] Igor Klep and Markus Schweighofer, A nichtnegativstellensatz for polynomials in noncommuting variables, Israel J. Math. 161 (2007), 17-27. MR 2350154 (2008j:47063), https://doi.org/10.1007/s11856-007-0070-2
  • [16] Igor Klep and Markus Schweighofer, Sums of Hermitian squares and the BMV conjecture, J. Stat. Phys. 133 (2008), no. 4, 739-760. MR 2456943 (2009j:82003), https://doi.org/10.1007/s10955-008-9632-x
  • [17] Scott McCullough, Factorization of operator-valued polynomials in several non-commuting variables, Linear Algebra Appl. 326 (2001), no. 1-3, 193-203. MR 1815959 (2002f:47035), https://doi.org/10.1016/S0024-3795(00)00285-8
  • [18] Paul S. Muhly and Baruch Solel, Schur class operator functions and automorphisms of Hardy algebras, Doc. Math. 13 (2008), 365-411. MR 2520475 (2010g:46098)
  • [19] Gelu Popescu, Free holomorphic functions on the unit ball of $ B(\mathcal {H})^n$. II, J. Funct. Anal. 258 (2010), no. 5, 1513-1578. MR 2566311 (2011b:47020), https://doi.org/10.1016/j.jfa.2009.10.014
  • [20] M. P. Schützenberger, On the definition of a family of automata, Information and Control 4 (1961), 245-270. MR 0135680 (24 #B1725)
  • [21] Konrad Schmüdgen, Unbounded operator algebras and representation theory, Operator Theory: Advances and Applications, vol. 37, Birkhäuser Verlag, Basel, 1990. MR 1056697 (91f:47062)
  • [22] Konrad Schmüdgen, Noncommutative real algebraic geometry--some basic concepts and first ideas, Emerging applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New York, 2009, pp. 325-350. MR 2500470 (2010m:13036), https://doi.org/10.1007/978-0-387-09686-5_9
  • [23] Dan-Virgil Voiculescu, Free analysis questions II: the Grassmannian completion and the series expansions at the origin, J. Reine Angew. Math. 645 (2010), 155-236. MR 2673426 (2012b:46144), https://doi.org/10.1515/CRELLE.2010.063

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 15A24, 47A63, 08B20

Retrieve articles in all journals with MSC (2010): 15A24, 47A63, 08B20


Additional Information

S. Balasubramanian
Affiliation: Department of Mathematics and Statistics, Indian Institute of Science Education and Research (IISER) – Kolkata, Mohanpur Campus, Nadia District, Pin: 741246, West Bengal, India
Email: bsriram@iiserkol.ac.in

S. McCullough
Affiliation: Department of Mathematics, The University of Florida, Box 118105, Gainesville, Florida 32611-8105
Email: sam@ufl.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-11984-8
Keywords: Free polynomials, quasi-convex, free real algebraic geometry
Received by editor(s): March 6, 2012
Received by editor(s) in revised form: August 11, 2012
Published electronically: May 13, 2014
Additional Notes: The research of the second author was supported by NSF grants DMS 0758306 and 1101137
Communicated by: Richard Rochberg
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society