Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On commuting and semi-commuting positive operators


Author: Niushan Gao
Journal: Proc. Amer. Math. Soc. 142 (2014), 2733-2745
MSC (2010): Primary 47B65; Secondary 47A15, 47B47
DOI: https://doi.org/10.1090/S0002-9939-2014-12002-8
Published electronically: May 7, 2014
MathSciNet review: 3209328
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be a positive compact operator on a Banach lattice. We prove that if either $ [K\rangle $ or $ \langle K]$ is ideal irreducible, then $ [K\rangle =\langle K]=L_+(X)\cap \{K\}'$. We also establish the Perron-Frobenius Theorem for such operators $ K$. Finally, we apply our results to answer questions posed by Abramovich and Aliprantis (2002) and Bračič et al. (2010).


References [Enhancements On Off] (What's this?)

  • [1] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, On the spectral radius of positive operators, Math. Z. 211 (1992), no. 4, 593-607. MR 1191098 (94a:47064), https://doi.org/10.1007/BF02571448
  • [2] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspaces of operators on $ l_p$-spaces, J. Funct. Anal. 115 (1993), no. 2, 418-424. MR 1234398 (94h:47009), https://doi.org/10.1006/jfan.1993.1097
  • [3] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspace theorems for positive operators, J. Funct. Anal. 124 (1994), no. 1, 95-111. MR 1284604 (95e:47006), https://doi.org/10.1006/jfan.1994.1099
  • [4] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, vol. 50, American Mathematical Society, Providence, RI, 2002. MR 1921782 (2003h:47072)
  • [5] E. A. Alekhno, Spectral properties of band irreducible operators, Positivity IV--theory and applications, Tech. Univ. Dresden, Dresden, 2006, pp. 5-14. MR 2243476 (2007h:47064)
  • [6] Egor A. Alekhno, Some properties of essential spectra of a positive operator, Positivity 11 (2007), no. 3, 375-386. MR 2336203 (2009c:47059), https://doi.org/10.1007/s11117-007-2088-4
  • [7] Egor A. Alekhno, The irreducibility in ordered Banach algebras, Positivity 16 (2012), no. 1, 143-176. MR 2892579, https://doi.org/10.1007/s11117-011-0117-9
  • [8] Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Springer, Dordrecht, 2006. Reprint of the 1985 original. MR 2262133
  • [9] Razvan Anisca and Vladimir G. Troitsky, Minimal vectors of positive operators, Indiana Univ. Math. J. 54 (2005), no. 3, 861-872. MR 2151236 (2006c:47041), https://doi.org/10.1512/iumj.2005.54.2544
  • [10] Janko Bračič, Roman Drnovšek, Yuliya B. Farforovskaya, Evgueniy L. Rabkin, and Jaroslav Zemánek, On positive commutators, Positivity 14 (2010), no. 3, 431-439. MR 2680506 (2011g:47085), https://doi.org/10.1007/s11117-009-0028-1
  • [11] Ben de Pagter, Irreducible compact operators, Math. Z. 192 (1986), no. 1, 149-153. MR 835399 (87d:47052), https://doi.org/10.1007/BF01162028
  • [12] Roman Drnovšek, Triangularizing semigroups of positive operators on an atomic normed Riesz space, Proc. Edinburgh Math. Soc. (2) 43 (2000), no. 1, 43-55. MR 1744698 (2001i:47062), https://doi.org/10.1017/S001309150002068X
  • [13] Roman Drnovšek, Common invariant subspaces for collections of operators, Integral Equations Operator Theory 39 (2001), no. 3, 253-266. MR 1818060 (2001m:47012), https://doi.org/10.1007/BF01332655
  • [14] Roman Drnovšek, Once more on positive commutators, Studia Math. 211 (2012), no. 3, 241-245. MR 3002445, https://doi.org/10.4064/sm211-3-5
  • [15] Roman Drnovšek and Marko Kandić, Ideal-triangularizability of semigroups of positive operators, Integral Equations Operator Theory 64 (2009), no. 4, 539-552. MR 2534032 (2010f:47017), https://doi.org/10.1007/s00020-009-1705-y
  • [16] Roman Drnovšek and Marko Kandić, More on positive commutators, J. Math. Anal. Appl. 373 (2011), no. 2, 580-584. MR 2720706 (2011j:47123), https://doi.org/10.1016/j.jmaa.2010.07.056
  • [17] N. Gao, Extensions of Perron-Frobenius theory, Positivity 17 (2013), no. 4, 965-977. MR 3129846
  • [18] N. Gao, Ph.D. thesis, forthcoming.
  • [19] N. Gao and V. Troitsky, Irreducible semigroups of positive operators on Banach lattices, Linear and Multilinear Algebra 62 (2014), no. 1, 74-95. MR 3175401
  • [20] Hailegebriel E. Gessesse, Invariant subspaces of super left-commutants, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1357-1361. MR 2465659 (2009i:47017), https://doi.org/10.1090/S0002-9939-08-09673-1
  • [21] Jacobus J. Grobler, Band irreducible operators, Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 4, 405-409. MR 869756 (88b:47049)
  • [22] J. J. Grobler, Spectral theory in Banach lattices, Operator theory in function spaces and Banach lattices, Oper. Theory Adv. Appl., vol. 75, Birkhäuser, Basel, 1995, pp. 133-172. MR 1322503 (96c:47047), https://doi.org/10.1007/978-3-0348-9076-2_10
  • [23] D. W. Hadwin, A. Kitover and M. Orhon, Strong monotonicity of spectral radius of positive operators, arXiv:1205.5583 [math.FA].
  • [24] A. K. Kitover, A generalized Jentzsch theorem, Positivity 9 (2005), no. 3, 501-509. MR 2188534 (2007b:47094), https://doi.org/10.1007/s11117-004-8291-7
  • [25] Ivo Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math. 19 (1970), 607-628. MR 0415405 (54 #3493)
  • [26] Fumio Niiro and Ikuko Sawashima, On the spectral properties of positive irreducible operators in an arbitrary Banach lattice and problems of H. H. Schaefer, Sci. Papers College Gen. Ed. Univ. Tokyo 16 (1966), 145-183. MR 0205084 (34 #4919)
  • [27] Heydar Radjavi, The Perron-Frobenius theorem revisited, Positivity 3 (1999), no. 4, 317-331. MR 1721557 (2000g:47047), https://doi.org/10.1023/A:1009766219129
  • [28] Heydar Radjavi and Peter Rosenthal, Simultaneous triangularization, Universitext, Springer-Verlag, New York, 2000. MR 1736065 (2001e:47001)
  • [29] Gleb Sirotkin, A version of the Lomonosov invariant subspace theorem for real Banach spaces, Indiana Univ. Math. J. 54 (2005), no. 1, 257-262. MR 2126724 (2006f:47007), https://doi.org/10.1512/iumj.2005.54.2561
  • [30] Ikuko Sawashima, On spectral properties of some positive operators, Natur. Sci. Rep. Ochanomizu Univ. 15 (1964), 53-64. MR 0187096 (32 #4550)
  • [31] Helmut Schaefer, Some spectral properties of positive linear operators, Pacific J. Math. 10 (1960), 1009-1019. MR 0115090 (22 #5893)
  • [32] Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York, 1974. MR 0423039 (54 #11023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B65, 47A15, 47B47

Retrieve articles in all journals with MSC (2010): 47B65, 47A15, 47B47


Additional Information

Niushan Gao
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G2G1
Email: niushan@ualberta.ca

DOI: https://doi.org/10.1090/S0002-9939-2014-12002-8
Keywords: Ideal irreducible operator, compact positive operator, commuting operators, semi-commuting operators
Received by editor(s): August 14, 2012
Received by editor(s) in revised form: August 31, 2012
Published electronically: May 7, 2014
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society