Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Becker-Gottlieb transfer for Hochschild cohomology


Author: Fei Xu
Journal: Proc. Amer. Math. Soc. 142 (2014), 2593-2608
MSC (2010): Primary 20C05; Secondary 20J99
DOI: https://doi.org/10.1090/S0002-9939-2014-12013-2
Published electronically: April 15, 2014
MathSciNet review: 3209315
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a finite group. Over any finite $ G$-poset $ \mathcal {P}$ we may define a transporter category $ G\propto \mathcal {P}$ as the corresponding Grothendieck construction. There exists a Becker-Gottlieb transfer from the ordinary cohomology of $ G\propto \mathcal {P}$ to that of $ G$. We shall construct it using module-theoretic methods and then extend it to a transfer from the Hochschild cohomology of $ k(G\propto \mathcal {P})$ to that of $ kG$, where $ k$ is a base field.


References [Enhancements On Off] (What's this?)

  • [1] J. C. Becker and D. H. Gottlieb, Transfer maps for fibrations and duality, Compositio Math. 33 (1976), no. 2, 107-133. MR 0436137 (55 #9087)
  • [2] D. J. Benson, Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. MR 1644252 (99f:20001a)
  • [3] D. J. Benson, Representations and cohomology. II. Cohomology of groups and modules, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1998. MR 1634407 (99f:20001b)
  • [4] W. G. Dwyer, Homology decompositions for classifying spaces of finite groups, Topology 36 (1997), no. 4, 783-804. MR 1432421 (97m:55016), https://doi.org/10.1016/S0040-9383(96)00031-6
  • [5] William G. Dwyer and Hans-Werner Henn, Homotopy theoretic methods in group cohomology, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2001. MR 1926776 (2003h:20093)
  • [6] W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395-442. MR 1274096 (95e:55019), https://doi.org/10.2307/2946585
  • [7] P. J. Hilton and U. Stammbach, A course in homological algebra, 2nd ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR 1438546 (97k:18001)
  • [8] Markus Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebr. Represent. Theory 2 (1999), no. 2, 107-135. MR 1702272 (2000h:20024), https://doi.org/10.1023/A:1009979222100
  • [9] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872 (2001j:18001)
  • [10] Daniel Quillen, Higher algebraic $ K$-theory. I, Algebraic $ K$-theory, I: Higher $ K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85-147. MR 0338129 (49 #2895)
  • [11] Mark A. Ronan and Stephen D. Smith, Sheaves on buildings and modular representations of Chevalley groups, J. Algebra 96 (1985), no. 2, 319-346. MR 810532 (87h:20087), https://doi.org/10.1016/0021-8693(85)90013-4
  • [12] Daniel E. Swenson, The Steinberg complex of an arbitrary finite group in arbitrary positive characteristic, Thesis (Ph.D.)-University of Minnesota, 2009, ProQuest LLC, Ann Arbor, MI. MR 2713697
  • [13] Peter Webb, An introduction to the representations and cohomology of categories, Group representation theory, EPFL Press, Lausanne, 2007, pp. 149-173. MR 2336640 (2008f:18013)
  • [14] Fei Xu, Hochschild and ordinary cohomology rings of small categories, Adv. Math. 219 (2008), no. 6, 1872-1893. MR 2455628 (2009h:18025), https://doi.org/10.1016/j.aim.2008.07.014
  • [15] F. Xu, Tensor structure on $ k\mathcal {C}$-mod and cohomology, Proc. Edinb. Math. Soc. (2) 56 (2013), no. 1, 349-370. MR 3021416
  • [16] Fei Xu, On local categories of finite groups, Math. Z. 272 (2012), no. 3-4, 1023-1036. MR 2995153, https://doi.org/10.1007/s00209-011-0971-y

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20C05, 20J99

Retrieve articles in all journals with MSC (2010): 20C05, 20J99


Additional Information

Fei Xu
Affiliation: Department of Mathematics, Shantou University, Shantou, Guangdong 515063, People’s Republic of China
Email: fxu@stu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2014-12013-2
Received by editor(s): April 3, 2012
Received by editor(s) in revised form: August 11, 2012
Published electronically: April 15, 2014
Additional Notes: The author \CJK*{UTF8} \CJKtilde\CJKfamily{gbsn}(徐 斐) \endCJK* was supported in part by a Beatriu de Pinós research fellowship from the government of Catalonia of Spain.
Communicated by: Pham Huu Tiep
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society