Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Trudinger-Moser type inequalities for weighted Sobolev spaces involving fractional dimensions


Authors: José Francisco de Oliveira and João Marcos do Ó
Journal: Proc. Amer. Math. Soc. 142 (2014), 2813-2828
MSC (2010): Primary 35J62, 46E35, 26D10, 35B33
DOI: https://doi.org/10.1090/S0002-9939-2014-12019-3
Published electronically: May 8, 2014
MathSciNet review: 3209335
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive sharp Trudinger-Moser inequalities for weighted Sobolev spaces and prove the existence of extremal functions. The inequalities we obtain here extend for fractional dimensions the classical results in the radial case. The main ingredient used in our arguments reveals a new proof of a result due to J. Moser for which we give an improved version.


References [Enhancements On Off] (What's this?)

  • [1] Shinji Adachi and Kazunaga Tanaka, Trudinger type inequalities in $ \mathbf {R}^N$ and their best exponents, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2051-2057. MR 1646323 (2000m:46069), https://doi.org/10.1090/S0002-9939-99-05180-1
  • [2] Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078 (2009e:46025)
  • [3] George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • [4] D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ {\bf R}^2$, Comm. Partial Differential Equations 17 (1992), no. 3-4, 407-435. MR 1163431 (93f:35076), https://doi.org/10.1080/03605309208820848
  • [5] Lennart Carleson and Sun-Yung A. Chang, On the existence of an extremal function for an inequality of J.Moser, Bull. Sci. Math. (2) 110 (1986), no. 2, 113-127 (English, with French summary). MR 878016 (88f:46070)
  • [6] Philippe Clément, Djairo Guedes de Figueiredo, and Enzo Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, 133-170. MR 1422009 (97k:35072)
  • [7] D. G. de Figueiredo, J. V. Gonçalves, and O. H. Miyagaki, On a class of quasilinear elliptic problems involving critical exponents, Commun. Contemp. Math. 2 (2000), no. 1, 47-59. MR 1753138 (2001j:35083), https://doi.org/10.1142/S0219199700000049
  • [8] Djairo G. de Figueiredo, João Marcos do Ó, and Bernhard Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math. 55 (2002), no. 2, 135-152. MR 1865413 (2002j:35104), https://doi.org/10.1002/cpa.10015
  • [9] Djairo G. de Figueiredo, João Marcos do Ó, and Bernhard Ruf, Elliptic equations and systems with critical Trudinger-Moser nonlinearities, Discrete Contin. Dyn. Syst. 30 (2011), no. 2, 455-476. MR 2772124 (2011m:35083), https://doi.org/10.3934/dcds.2011.30.455
  • [10] João Marcos B. do Ó, $ N$-Laplacian equations in $ \mathbf {R}^N$ with critical growth, Abstr. Appl. Anal. 2 (1997), no. 3-4, 301-315. MR 1704875 (2001h:35045), https://doi.org/10.1155/S1085337597000419
  • [11] Martin Flucher, Extremal functions for the Trudinger-Moser inequality in $ 2$ dimensions, Comment. Math. Helv. 67 (1992), no. 3, 471-497. MR 1171306 (93k:58073), https://doi.org/10.1007/BF02566514
  • [12] M. Ishiwata, M. Nakamura, and H. Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 2, 297-314. MR 3181671
  • [13] Jon Jacobsen and Klaus Schmitt, Radial solutions of quasilinear elliptic differential equations, Handbook of differential equations, Elsevier/North-Holland, Amsterdam, 2004, pp. 359-435. MR 2166492 (2006k:34054)
  • [14] Jon Jacobsen and Klaus Schmitt, The Liouville-Bratu-Gelfand problem for radial operators, J. Differential Equations 184 (2002), no. 1, 283-298. MR 1929156 (2003g:34036), https://doi.org/10.1006/jdeq.2001.4151
  • [15] B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR 1069756 (92b:26028)
  • [16] Yu Xiang Li, Remarks on the extremal functions for the Moser-Trudinger inequality, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 2, 545-550. MR 2214376 (2006m:35101), https://doi.org/10.1007/s10114-005-0568-7
  • [17] Kai-Ching Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2663-2671. MR 1333394 (96i:58043), https://doi.org/10.1090/S0002-9947-96-01541-3
  • [18] Guozhen Lu and Yunyan Yang, Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $ L^p$ norm in two dimension, Discrete Contin. Dyn. Syst. 25 (2009), no. 3, 963-979. MR 2533985 (2010m:35011), https://doi.org/10.3934/dcds.2009.25.963
  • [19] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092. MR 0301504 (46 #662)
  • [20] H. L. Royden, Real analysis, 4th edition, Prentice Hall, New York, 2010.
  • [21] Michael Struwe, Critical points of embeddings of $ H^{1,n}_0$ into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 5, 425-464 (English, with French summary). MR 970849 (90c:35084)
  • [22] Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. MR 0216286 (35 #7121)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J62, 46E35, 26D10, 35B33

Retrieve articles in all journals with MSC (2010): 35J62, 46E35, 26D10, 35B33


Additional Information

José Francisco de Oliveira
Affiliation: Department of Mathematics, Federal University of Pernambuco, 50740-560 Recife, PE, Brazil
Email: oliveira@dmat.ufpe.br

João Marcos do Ó
Affiliation: Department of Mathematics, Federal University of Paraíba, 58051-900 João Pessoa, PB, Brazil
Email: jmbo@pq.cnpq.br

DOI: https://doi.org/10.1090/S0002-9939-2014-12019-3
Received by editor(s): December 29, 2011
Received by editor(s) in revised form: May 19, 2012, and September 8, 2012
Published electronically: May 8, 2014
Additional Notes: This research was partially supported by the National Institute of Science and Technology of Mathematics INCT-Mat, CAPES-PROCAD, CNPq grant 307400/2009-3 and 141853/2012-3, and MCT/CNPq/MEC/CAPES grant 552758/2011-6
Communicated by: Walter Craig
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society