Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

$ \infty$-minimal submanifolds


Author: Nikolaos I. Katzourakis
Journal: Proc. Amer. Math. Soc. 142 (2014), 2797-2811
MSC (2010): Primary 35J47, 35J62, 53C24; Secondary 49J99
DOI: https://doi.org/10.1090/S0002-9939-2014-12039-9
Published electronically: May 5, 2014
MathSciNet review: 3209334
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We identify the Variational Principle governing $ \infty $-Harmonic maps $ u : \Omega \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^N$, that is, solutions to the $ \infty $-Laplacian

$\displaystyle \Delta _\infty u \ :=\ \Big (Du \otimes Du + \vert Du\vert^2 [Du]^\bot \! \otimes I \Big ) : D^2 u\ = \ 0.$ (1)

System (1) was first derived in the limit of the $ p$-Laplacian as $ p\rightarrow \infty $ in a 2012 paper of the author and was recently studied further by him. Here we show that (1) is the ``Euler-Lagrange PDE'' of the vector-valued Calculus of Variations in $ L^\infty $ for the functional

$\displaystyle \Vert Du\Vert _{L^\infty (\Omega )}\ = \ \underset {\Omega }{\textrm {ess}\,\textrm {sup}} \,\vert Du\vert.$ (2)

We introduce the notion of $ \infty $-Minimal Maps, which are Rank-One Absolute Minimals of (2) with ``$ \infty $-Minimal Area'' of the submanifold $ u(\Omega ) \subseteq \mathbb{R}^N$, and prove they solve (1). The converse is true for immersions. We also establish a maximum principle for $ \vert Du\vert$ for solutions to (1). We further characterize minimal surfaces of $ \mathbb{R}^3$ as those locally parameterizable by isothermal immersions with $ \infty $-Minimal Area and show that isothermal $ \infty $-Harmonic maps are rigid.

References [Enhancements On Off] (What's this?)

  • [A1] Gunnar Aronsson, Minimization problems for the functional $ {\rm sup}_{x}\,F(x,\,f(x),\,f^{\prime } (x))$, Ark. Mat. 6 (1965), 33-53 (1965). MR 0196551 (33 #4738)
  • [A2] Gunnar Aronsson, Minimization problems for the functional $ {\rm sup}_{x}\, F(x, f(x),f^\prime (x))$. II, Ark. Mat. 6 (1966), 409-431 (1966). MR 0203541 (34 #3391)
  • [A3] Gunnar Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561 (1967). MR 0217665 (36 #754)
  • [A4] Gunnar Aronsson, On the partial differential equation $ u_{x}{}^{2}\!u_{xx} +2u_{x}u_{y}u_{xy}+u_{y}{}^{2}\!u_{yy}=0$, Ark. Mat. 7 (1968), 395-425 (1968). MR 0237962 (38 #6239)
  • [A5] Gunnar Aronsson, Minimization problems for the functional $ {\rm sup}_{x}\,F(x,\,f(x),\,f^{\prime } \,(x))$. III, Ark. Mat. 7 (1969), 509-512 (1969). MR 0240690 (39 #2035)
  • [BEJ] E. N. Barron, L. C. Evans, and R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations, Trans. Amer. Math. Soc. 360 (2008), no. 1, 77-101. MR 2341994 (2010j:35162), https://doi.org/10.1090/S0002-9947-07-04338-3
  • [CR] Luca Capogna and Andrew Raich, An Aronsson type approach to extremal quasiconformal mappings, J. Differential Equations 253 (2012), no. 3, 851-877. MR 2922655, https://doi.org/10.1016/j.jde.2012.04.015
  • [C] M. G. Crandall, A visit with the $ \infty $-Laplacian, in Calculus of Variations and Non-Linear Partial Differential Equations, Springer Lecture Notes in Mathematics, Springer, Berlin, 2008.MR 2408259 (2009m:35129)
  • [K1] Nikolaos I. Katzourakis, Explicit singular viscosity solutions of the Aronsson equation, C. R. Math. Acad. Sci. Paris 349 (2011), no. 21-22, 1173-1176 (English, with English and French summaries). MR 2855498 (2012j:35099), https://doi.org/10.1016/j.crma.2011.10.010
  • [K2] Nikolaos I. Katzourakis, $ L^\infty $ variational problems for maps and the Aronsson PDE system, J. Differential Equations 253 (2012), no. 7, 2123-2139. MR 2946966, https://doi.org/10.1016/j.jde.2012.05.012
  • [K3] N. I. Katzourakis, On the structure of $ {\infty }$-harmonic maps, preprint, 2012.
  • [K4] N. I. Katzourakis, Extremal $ {\infty }$-quasiconformal immersions, preprint, 2012.
  • [K5] N. I. Katzourakis, Contact solutions for nonlinear systems of partial Differential equations, manuscript in preparation, 2012.
  • [OTW] Ye-Lin Ou, Tiffany Troutman, and Frederick Wilhelm, Infinity-harmonic maps and morphisms, Differential Geom. Appl. 30 (2012), no. 2, 164-178. MR 2913071, https://doi.org/10.1016/j.difgeo.2011.11.011
  • [SS] Scott Sheffield and Charles K. Smart, Vector-valued optimal Lipschitz extensions, Comm. Pure Appl. Math. 65 (2012), no. 1, 128-154. MR 2846639, https://doi.org/10.1002/cpa.20391
  • [WO] Ze-Ping Wang and Ye-Lin Ou, Classifications of some special infinity-harmonic maps, Balkan J. Geom. Appl. 14 (2009), no. 1, 120-131. MR 2539666 (2011a:53124)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J47, 35J62, 53C24, 49J99

Retrieve articles in all journals with MSC (2010): 35J47, 35J62, 53C24, 49J99


Additional Information

Nikolaos I. Katzourakis
Affiliation: Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, E-48009, Bilbao, Spain
Address at time of publication: Department of Mathematics and Statistics, University of Reading, Whiteknights P. O. Box 220, Reading RG6 6AX, United Kingdom
Email: n.katzourakis@reading.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-2014-12039-9
Keywords: $\infty$-Harmonic maps, vector-valued calculus of variations in $L^\infty$, vector-valued optimal Lipschitz extensions, quasi-conformal maps, Aronsson PDE, rigidity.
Received by editor(s): June 4, 2012
Received by editor(s) in revised form: September 7, 2012
Published electronically: May 5, 2014
Communicated by: Chuu-Lian Terng
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society