Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Density problems on vector bundles and manifolds


Author: Lashi Bandara
Journal: Proc. Amer. Math. Soc. 142 (2014), 2683-2695
MSC (2010): Primary 46E35, 53C21, 58J60
DOI: https://doi.org/10.1090/S0002-9939-2014-12284-2
Published electronically: April 22, 2014
MathSciNet review: 3209324
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study some canonical differential operators on vector bundles over smooth, complete Riemannian manifolds. Under very general assumptions, we show that smooth, compactly supported sections are dense in the domains of these operators. Furthermore, we show that smooth, compactly supported functions are dense in second order Sobolev spaces on such manifolds under the sole additional assumption that the Ricci curvature is uniformly bounded from below.


References [Enhancements On Off] (What's this?)

  • [1] Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and Ph. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on $ {\mathbb{R}}^n$, Ann. of Math. (2) 156 (2002), no. 2, 633-654. MR 1933726 (2004c:47096c), https://doi.org/10.2307/3597201
  • [2] Andreas Axelsson, Stephen Keith, and Alan McIntosh, The Kato square root problem for mixed boundary value problems, J. London Math. Soc. (2) 74 (2006), no. 1, 113-130. MR 2254555 (2008m:35078), https://doi.org/10.1112/S0024610706022873
  • [3] Andreas Axelsson, Stephen Keith, and Alan McIntosh, Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math. 163 (2006), no. 3, 455-497. MR 2207232 (2007k:58029), https://doi.org/10.1007/s00222-005-0464-x
  • [4] Lashi Bandara and Alan McIntosh, The Kato square root problem on vector bundles with generalised bounded geometry, arXiv:1203.0373v2 (2012).
  • [5] Paul R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J. Functional Analysis 12 (1973), 401-414. MR 0369890 (51 #6119)
  • [6] Matthew P. Gaffney, The harmonic operator for exterior differential forms, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 48-50. MR 0048138 (13,987b)
  • [7] Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 1999. MR 1688256 (2000e:58011)
  • [8] Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin, 1976. MR 0407617 (53 #11389)
  • [9] Andrew J. Morris, The Kato square root problem on submanifolds, J. Lond. Math. Soc. (2) 86 (2012), no. 3, 879-910. MR 3000834
  • [10] Walter Roelcke, Über den Laplace-Operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen Gruppen, Math. Nachr. 21 (1960), 131-149 (German). MR 0151927 (27 #1908)
  • [11] Kōsaku Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the sixth (1980) edition. MR 1336382 (96a:46001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46E35, 53C21, 58J60

Retrieve articles in all journals with MSC (2010): 46E35, 53C21, 58J60


Additional Information

Lashi Bandara
Affiliation: Centre for Mathematics and its Applications, Australian National University, Canberra, ACT, 0200, Australia
Email: lashi.bandara@anu.edu.au

DOI: https://doi.org/10.1090/S0002-9939-2014-12284-2
Keywords: Density problems, first order operators on vector bundles, Laplacian on vector bundles, second order Sobolev spaces on manifolds
Received by editor(s): August 20, 2012
Published electronically: April 22, 2014
Communicated by: James E. Colliander
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society