Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some positivities in certain triangular arrays


Author: Bao-Xuan Zhu
Journal: Proc. Amer. Math. Soc. 142 (2014), 2943-2952
MSC (2010): Primary 05A20
DOI: https://doi.org/10.1090/S0002-9939-2014-12008-9
Published electronically: April 11, 2014
MathSciNet review: 3223349
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{T_{n,k}\}_{n,k\ge 0}$ be an array of nonnegative numbers satisfying the recurrence relation

$\displaystyle T_{n,k}=(a_1k^2+a_2k+a_3)T_{n-1,k}+(b_1k^2+b_2k+b_3)T_{n-1,k-1}$    

with $ T_{n,k}=0$ unless $ 0\le k\le n$. We obtain some results for the total positivity of the matrix $ \left (T_{n,k}\right )_{n,k\ge 0}$, Pólya frequency properties of the row and column generating functions, and $ q$-log-convexity of the row generating functions. This allows a unified treatment of the properties above for some triangular arrays of the second kind, including the Stirling triangle, Jacobi-Stirling triangle, Legendre-Stirling triangle, and central factorial numbers triangle.

References [Enhancements On Off] (What's this?)

  • [1] George E. Andrews, Eric S. Egge, Wolfgang Gawronski, and Lance L. Littlejohn, The Jacobi-Stirling numbers, J. Combin. Theory Ser. A 120 (2013), no. 1, 288-303. MR 2971713, https://doi.org/10.1016/j.jcta.2012.08.006
  • [2] G. E. Andrews, W. Gawronski, and L. L. Littlejohn, The Legendre-Stirling numbers, Discrete Math. 311 (2011), no. 14, 1255-1272. MR 2795536 (2012e:05017), https://doi.org/10.1016/j.disc.2011.02.028
  • [3] George E. Andrews and Lance L. Littlejohn, A combinatorial interpretation of the Legendre-Stirling numbers, Proc. Amer. Math. Soc. 137 (2009), no. 8, 2581-2590. MR 2497469 (2010g:05016), https://doi.org/10.1090/S0002-9939-09-09814-1
  • [4] Petter Brändén, On linear transformations preserving the Pólya frequency property, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3697-3716 (electronic). MR 2218995 (2007a:05007), https://doi.org/10.1090/S0002-9947-06-03856-6
  • [5] Francesco Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989), no. 413, viii+106. MR 963833 (90d:05014)
  • [6] Francesco Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Jerusalem combinatorics '93, Contemp. Math., vol. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 71-89. MR 1310575 (95j:05026), https://doi.org/10.1090/conm/178/01893
  • [7] Francesco Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A 71 (1995), no. 2, 175-218. MR 1342446 (96f:05019), https://doi.org/10.1016/0097-3165(95)90000-4
  • [8] Lynne M. Butler, The $ q$-log-concavity of $ q$-binomial coefficients, J. Combin. Theory Ser. A 54 (1990), no. 1, 54-63. MR 1051778 (91c:05023), https://doi.org/10.1016/0097-3165(90)90005-H
  • [9] William Y. C. Chen, Robert L. Tang, Larry X. W. Wang, and Arthur L. B. Yang, The $ q$-log-convexity of the Narayana polynomials of type B, Adv. in Appl. Math. 44 (2010), no. 2, 85-110. MR 2576841 (2011b:33039), https://doi.org/10.1016/j.aam.2009.03.004
  • [10] William Y. C. Chen, Larry X. W. Wang, and Arthur L. B. Yang, Schur positivity and the $ q$-log-convexity of the Narayana polynomials, J. Algebraic Combin. 32 (2010), no. 3, 303-338. MR 2721054 (2011j:05359), https://doi.org/10.1007/s10801-010-0216-x
  • [11] William Y. C. Chen, Larry X. W. Wang, and Arthur L. B. Yang, Recurrence relations for strongly $ q$-log-convex polynomials, Canad. Math. Bull. 54 (2011), no. 2, 217-229. MR 2884236 (2012k:05029), https://doi.org/10.4153/CMB-2011-008-5
  • [12] Eric S. Egge, Legendre-Stirling permutations, European J. Combin. 31 (2010), no. 7, 1735-1750. MR 2673015 (2011j:05010), https://doi.org/10.1016/j.ejc.2010.03.005
  • [13] W. N. Everitt, L. L. Littlejohn, and R. Wellman, Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression, On the occasion of the 65th birthday of Professor Michael Eastham, J. Comput. Appl. Math. 148 (2002), no. 1, 213-238. MR 1946196 (2003k:34089), https://doi.org/10.1016/S0377-0427(02)00582-4
  • [14] W. N. Everitt, K. H. Kwon, L. L. Littlejohn, R. Wellman, and G. J. Yoon, Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression, J. Comput. Appl. Math. 208 (2007), no. 1, 29-56. MR 2347735 (2008k:33046), https://doi.org/10.1016/j.cam.2006.10.045
  • [15] Yoann Gelineau and Jiang Zeng, Combinatorial interpretations of the Jacobi-Stirling numbers, Electron. J. Combin. 17 (2010), no. 1, Research Paper 70, 17. MR 2651723 (2011g:05007)
  • [16] Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif, 1968. MR 0230102 (37 #5667)
  • [17] Pierre Leroux, Reduced matrices and $ q$-log-concavity properties of $ q$-Stirling numbers, J. Combin. Theory Ser. A 54 (1990), no. 1, 64-84. MR 1051779 (91c:05024), https://doi.org/10.1016/0097-3165(90)90006-I
  • [18] Lily L. Liu and Yi Wang, A unified approach to polynomial sequences with only real zeros, Adv. in Appl. Math. 38 (2007), no. 4, 542-560. MR 2311051 (2008a:05013), https://doi.org/10.1016/j.aam.2006.02.003
  • [19] Lily L. Liu and Yi Wang, On the log-convexity of combinatorial sequences, Adv. in Appl. Math. 39 (2007), no. 4, 453-476. MR 2356431 (2008h:05013), https://doi.org/10.1016/j.aam.2006.11.002
  • [20] Pietro Mongelli, Total positivity properties of Jacobi-Stirling numbers, Adv. in Appl. Math. 48 (2012), no. 2, 354-364. MR 2873882, https://doi.org/10.1016/j.aam.2011.06.008
  • [21] Pietro Mongelli, Combinatorial interpretations of particular evaluations of complete and elementary symmetric functions, Electron. J. Combin. 19 (2012), no. 1, Paper 60, 23. MR 2916262
  • [22] John Riordan, Combinatorial identities, John Wiley & Sons Inc., New York, 1968. MR 0231725 (38 #53)
  • [23] Bruce E. Sagan, Inductive proofs of $ q$-log concavity, Discrete Math. 99 (1992), no. 1-3, 289-306. MR 1158792 (93e:05004), https://doi.org/10.1016/0012-365X(92)90377-R
  • [24] Bruce E. Sagan, Log concave sequences of symmetric functions and analogs of the Jacobi-Trudi determinants, Trans. Amer. Math. Soc. 329 (1992), no. 2, 795-811. MR 1066448 (92e:05121), https://doi.org/10.2307/2153964
  • [25] Richard P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986) Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500-535. MR 1110850 (92e:05124), https://doi.org/10.1111/j.1749-6632.1989.tb16434.x
  • [26] Xun-Tuan Su and Yi Wang, On unimodality problems in Pascal's triangle, Electron. J. Combin. 15 (2008), no. 1, Research Paper 113, 12. MR 2438585 (2009f:05013)
  • [27] Xun-Tuan Su, Yi Wang, and Yeong-Nan Yeh, Unimodality problems of multinomial coefficients and symmetric functions, Electron. J. Combin. 18 (2011), no. 1, Paper 73, 8. MR 2788690 (2012e:05020)
  • [28] X.-T. Su, W.-W. Zhang, Unimodal rays of the generalized Pascal's triangle, Ars Combin. 108 (2013), 289-296. MR 3060275
  • [29] Yi Wang and Yeong-Nan Yeh, Polynomials with real zeros and Pólya frequency sequences, J. Combin. Theory Ser. A 109 (2005), no. 1, 63-74. MR 2110198 (2005i:05013), https://doi.org/10.1016/j.jcta.2004.07.008

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 05A20

Retrieve articles in all journals with MSC (2010): 05A20


Additional Information

Bao-Xuan Zhu
Affiliation: School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, People’s Republic of China
Email: bxzhu@jsnu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2014-12008-9
Keywords: Recurrence relations, Jacobi-Stirling numbers, total positivity, log-concavity, P\'olya frequency, $q$-log-convexity
Received by editor(s): May 28, 2012
Received by editor(s) in revised form: August 27, 2012
Published electronically: April 11, 2014
Additional Notes: This work was partially supported by the National Natural Science Foundation of China (Nos. 11071030, 11201191), the Natural Science Foundation of Jiangsu Higher Education Institutions (No. 12KJB110005), Key Project of Chinese Ministry of Education (No. 212098), PAPD of Jiangsu Higher Education Institutions and Natural Science Foundation of Jiangsu Normal University (No. 11XLR30)
Communicated by: Jim Haglund
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society