Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

A new proof of the bilinear T(1) Theorem


Author: Jarod Hart
Journal: Proc. Amer. Math. Soc. 142 (2014), 3169-3181
MSC (2010): Primary 42B20; Secondary 42B25
DOI: https://doi.org/10.1090/S0002-9939-2014-12054-5
Published electronically: May 29, 2014
MathSciNet review: 3223373
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new simple proof of the bilinear T(1) Theorem in the spirit of the proof of Coifman-Meyer of the celebrated result of David and Journé in the linear case is presented. This new proof is obtained independently of the linear T(1) Theorem by combining recent bilinear square function bounds and a paraproduct construction.


References [Enhancements On Off] (What's this?)

  • [1] Árpád Bényi, Bilinear singular integral operators, smooth atoms and molecules, J. Fourier Anal. Appl. 9 (2003), no. 3, 301-319. MR 1988754 (2004c:42028), https://doi.org/10.1007/s00041-003-0016-y
  • [2] Árpád Bényi, Ciprian Demeter, Andrea R. Nahmod, Christoph M. Thiele, Rodolfo H. Torres, and Paco Villarroya, Modulation invariant bilinear $ T(1)$ theorem, J. Anal. Math. 109 (2009), 279-352. MR 2585397 (2011b:42032), https://doi.org/10.1007/s11854-009-0034-z
  • [3] Árpád Bényi, Diego Maldonado, Virginia Naibo, and Rodolfo H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, Integral Equations Operator Theory 67 (2010), no. 3, 341-364. MR 2660466 (2011g:47111), https://doi.org/10.1007/s00020-010-1782-y
  • [4] Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930. MR 0117349 (22 #8129)
  • [5] Ronald R. Coifman and Yves F. Meyer, A simple proof of a theorem by G. David and J.-L. Journé on singular integral operators, Probability theory and harmonic analysis (Cleveland, Ohio, 1983) Monogr. Textbooks Pure Appl. Math., vol. 98, Dekker, New York, 1986, pp. 61-65. MR 830231 (87f:47075)
  • [6] Michael Christ and Jean-Lin Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math. 159 (1987), no. 1-2, 51-80. MR 906525 (89a:42024), https://doi.org/10.1007/BF02392554
  • [7] Guy David and Jean-Lin Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2) 120 (1984), no. 2, 371-397. MR 763911 (85k:42041), https://doi.org/10.2307/2006946
  • [8] G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581 (84h:43027)
  • [9] M. Frazier, Y.-S. Han, B. Jawerth, and G. Weiss, The $ T1$ theorem for Triebel-Lizorkin spaces, Harmonic analysis and partial differential equations (El Escorial, 1987), Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 168-181. MR 1013823 (90j:46035), https://doi.org/10.1007/BFb0086801
  • [10] M. Frazier, R. Torres, and G. Weiss, The boundedness of Calderón-Zygmund operators on the spaces $ \dot F^{\alpha ,q}_p$, Rev. Mat. Iberoamericana 4 (1988), no. 1, 41-72. MR 1009119 (90k:42029), https://doi.org/10.4171/RMI/63
  • [11] Loukas Grafakos, Modern Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2009. MR 2463316 (2011d:42001)
  • [12] L. Grafakos, L. Liu, D. Maldonado, and D. Yang, Multilinear analysis on metric spaces, Dissertationes Math. (Rozprawy Mat.) 497 (2014), 121 pp. MR 3183648
  • [13] L. Grafakos and L. Oliveira, Carleson measures associated with families of multilinear operators, Studia Math. 211 (2012), no. 1, 71-94. MR 2990559
  • [14] Loukas Grafakos and Rodolfo H. Torres, On multilinear singular integrals of Calderón-Zygmund type, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), 2002, pp. 57-91. MR 1964816 (2004c:42031), https://doi.org/10.5565/PUBLMAT_Esco02_04
  • [15] Loukas Grafakos and Rodolfo H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124-164. MR 1880324 (2002j:42029), https://doi.org/10.1006/aima.2001.2028
  • [16] J. Hart, Bilinear square functions and vector-valued Calderón-Zygmund operators, J. Fourier Anal. Appl. 18 (2012), no. 6, 1291-1313. MR 3000983
  • [17] J. Hart, Erratum to: ``Square functions and vector-valued Calderón-Zygmund operators'', J. Fourier Anal. Appl. 20 (2014), no. 1, 222-224. MR 3180895
  • [18] Peter W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Harmonic analysis and partial differential equations (El Escorial, 1987), Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 24-68. MR 1013815 (91b:42032), https://doi.org/10.1007/BFb0086793
  • [19] Diego Maldonado and Virginia Naibo, On the boundedness of bilinear operators on products of Besov and Lebesgue spaces, J. Math. Anal. Appl. 352 (2009), no. 2, 591-603. MR 2501903 (2009m:42024), https://doi.org/10.1016/j.jmaa.2008.11.020
  • [20] Yves Meyer, Les nouveaux opérateurs de Calderón-Zygmund, Astérisque 131 (1985), 237-254 (French). Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983). MR 816750 (87f:42040b)
  • [21] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, with the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • [22] Rodolfo H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 90 (1991), no. 442, viii+172. MR 1048075 (91g:47044)
  • [23] Michael Wilson, Convergence and stability of the Calderón reproducing formula in $ H^1$ and $ BMO$, J. Fourier Anal. Appl. 17 (2011), no. 5, 801-820. MR 2838108, https://doi.org/10.1007/s00041-010-9165-y

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B20, 42B25

Retrieve articles in all journals with MSC (2010): 42B20, 42B25


Additional Information

Jarod Hart
Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
Email: jhart@math.ku.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12054-5
Keywords: Bilinear, T(1) Theorem, Calder\'on-Zygmund operators, square function
Received by editor(s): May 25, 2012
Received by editor(s) in revised form: May 26, 2012, July 11, 2012, July 12, 2012, August 21, 2012, and October 3, 2012
Published electronically: May 29, 2014
Additional Notes: The author was supported in part by NSF Grant #DMS1069015.
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society