Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniform bounds for preperiodic points in families of twists


Authors: Alon Levy, Michelle Manes and Bianca Thompson
Journal: Proc. Amer. Math. Soc. 142 (2014), 3075-3088
MSC (2010): Primary 37P05; Secondary 11R99
DOI: https://doi.org/10.1090/S0002-9939-2014-12086-7
Published electronically: May 19, 2014
MathSciNet review: 3223364
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \phi $ be a morphism of $ \mathbb{P}^N$ defined over a number field $ K.$ We prove that there is a bound $ B$ depending only on $ \phi $ such that every twist of $ \phi $ has no more than $ B$ $ K$-rational preperiodic points. (This result is analogous to a result of Silverman for abelian varieties.) For two specific families of quadratic rational maps over $ \mathbb{Q}$, we find the bound $ B$ explicitly.


References [Enhancements On Off] (What's this?)

  • [1] Najmuddin Fakhruddin, Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc. 18 (2003), no. 2, 109-122. MR 1995861 (2004f:14038)
  • [2] E. V. Flynn, Bjorn Poonen, and Edward F. Schaefer, Cycles of quadratic polynomials and rational points on a genus-$ 2$ curve, Duke Math. J. 90 (1997), no. 3, 435-463. MR 1480542 (98j:11048), https://doi.org/10.1215/S0012-7094-97-09011-6
  • [3] R. P. Kurshan and A. M. Odlyzko, Values of cyclotomic polynomials at roots of unity, Math. Scand. 49 (1981), no. 1, 15-35. MR 645087 (83k:12006)
  • [4] Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556 (2003e:00003)
  • [5] Alon Levy, The space of morphisms on projective space, Acta Arith. 146 (2011), no. 1, 13-31. MR 2741188 (2012d:37211), https://doi.org/10.4064/aa146-1-2
  • [6] Michelle Manes, $ \mathbb{Q}$-rational cycles for degree-2 rational maps having an automorphism, Proc. Lond. Math. Soc. (3) 96 (2008), no. 3, 669-696. MR 2407816 (2009a:14029), https://doi.org/10.1112/plms/pdm044
  • [7] Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437-449 (French). MR 1369424 (96i:11057), https://doi.org/10.1007/s002220050059
  • [8] Steven J. Miller and Ramin Takloo-Bighash, An invitation to modern number theory,: with a foreword by Peter Sarnak, Princeton University Press, Princeton, NJ, 2006. MR 2208019 (2006k:11002)
  • [9] Patrick Morton, Arithmetic properties of periodic points of quadratic maps. II, Acta Arith. 87 (1998), no. 2, 89-102. MR 1665198 (2000c:11103)
  • [10] Patrick Morton and Joseph H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2 (1994), 97-110. MR 1264933 (95b:11066), https://doi.org/10.1155/S1073792894000127
  • [11] D. G. Northcott, Periodic points on an algebraic variety, Ann. of Math. (2) 51 (1950), 167-177. MR 0034607 (11,615c)
  • [12] Clayton Petsche, Lucien Szpiro, and Michael Tepper, Isotriviality is equivalent to potential good reduction for endomorphisms of $ \mathbb{P}^N$ over function fields, J. Algebra 322 (2009), no. 9, 3345-3365. MR 2567424 (2011e:14023), https://doi.org/10.1016/j.jalgebra.2008.11.027
  • [13] Bjorn Poonen, The classification of rational preperiodic points of quadratic polynomials over $ {\bf Q}$: a refined conjecture, Math. Z. 228 (1998), no. 1, 11-29. MR 1617987 (99j:11076), https://doi.org/10.1007/PL00004405
  • [14] Joseph H. Silverman, Lower bounds for height functions, Duke Math. J. 51 (1984), no. 2, 395-403. MR 747871 (87d:11039), https://doi.org/10.1215/S0012-7094-84-05118-4
  • [15] Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407 (2008c:11002)
  • [16] Michael Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367-380. MR 2465796 (2010b:11067), https://doi.org/10.1112/S1461157000000644

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37P05, 11R99

Retrieve articles in all journals with MSC (2010): 37P05, 11R99


Additional Information

Alon Levy
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T124
Email: levy@math.ubc.ca

Michelle Manes
Affiliation: Department of Mathematics, University of Hawaii at Manoa, Honolulu, Hawaii 96822
Email: mmanes@math.hawaii.edu

Bianca Thompson
Affiliation: Department of Mathematics, University of Hawaii at Manoa, Honolulu, Hawaii 96822
Email: bat7@hawaii.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12086-7
Received by editor(s): May 8, 2012
Received by editor(s) in revised form: September 14, 2012
Published electronically: May 19, 2014
Additional Notes: The second and third authors’ work was partially supported by NSF-DMS 1102858.
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society