Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A reconstruction algorithm for ultrasound-modulated diffuse optical tomography


Authors: Habib Ammari, Emmanuel Bossy, Josselin Garnier, Loc Hoang Nguyen and Laurent Seppecher
Journal: Proc. Amer. Math. Soc. 142 (2014), 3221-3236
MSC (2010): Primary 65R32, 44A12, 31B20
DOI: https://doi.org/10.1090/S0002-9939-2014-12090-9
Published electronically: May 23, 2014
MathSciNet review: 3223378
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to develop an efficient reconstruction algorithm for ultrasound-modulated diffuse optical tomography. In diffuse optical imaging, the resolution is in general low. By mechanically perturbing the medium, we show that it is possible to achieve a significant resolution enhancement. When a spherical acoustic wave is propagating inside the medium, the optical parameter of the medium is perturbed. Using cross-correlations of the boundary measurements of the intensity of the light propagating in the perturbed medium and in the unperturbed one, we provide an iterative algorithm for reconstructing the optical absorption coefficient. Using a spherical Radon transform inversion, we first establish an equation that the optical absorption satisfies. This equation together with the diffusion model constitutes a nonlinear system. Then, solving iteratively such a nonlinear coupled system, we obtain the true absorption parameter. We prove the convergence of the algorithm and present numerical results to illustrate its resolution and stability performances.


References [Enhancements On Off] (What's this?)

  • [1] Habib Ammari, An introduction to mathematics of emerging biomedical imaging, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 62, Springer, Berlin, 2008. MR 2440857 (2010j:44002)
  • [2] H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math. 68 (2008), no. 6, 1557-1573. MR 2424952 (2009h:35439), https://doi.org/10.1137/070686408
  • [3] H. Ammari, E. Bossy, J. Garnier, and L. Seppecher, Acousto-electromagnetic tomography, SIAM J. Appl. Math., 72 (2012), pp. 1592-1617. MR 3022278
  • [4] H. Ammari, E. Bretin, V. Jugnon, and A. Wahab, Photoacoustic imaging for attenuating acoustic media, Lecture Notes in Math., vol. 2035, 57-84, Springer-Verlag, Berlin, 2011. MR 3024670
  • [5] Habib Ammari, Yves Capdeboscq, Frédéric de Gournay, Anna Rozanova-Pierrat, and Faouzi Triki, Microwave imaging by elastic deformation, SIAM J. Appl. Math. 71 (2011), no. 6, 2112-2130. MR 2873260, https://doi.org/10.1137/110828241
  • [6] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems 15 (1999), no. 2, R41-R93. MR 1684463 (2000b:78023), https://doi.org/10.1088/0266-5611/15/2/022
  • [7] G. Bal and J. C. Schotland, Inverse scattering and acousto-optic imaging, Phys. Rev. Lett. 104 (2010), 043902.
  • [8] D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Quan Zhang, Imaging the body with diffuse optical tomography, Signal Processing Magazine, IEEE 18 (2001), 57-75.
  • [9] E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, Transient optoelastography in optically diffusive media, Appl. Phys. Lett. 90 (2007), 174111.
  • [10] Y. Capdeboscq, J. Fehrenbach, F. de Gournay, and O. Kavian, Imaging by modification: numerical reconstruction of local conductivities from corresponding power density measurements, SIAM J. Imaging Sci. 2 (2009), no. 4, 1003-1030. MR 2559157 (2011c:35611), https://doi.org/10.1137/080723521
  • [11] D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, Ultrasound-mediated optical tomography: a review of current methods, Interface Focus, DOI 10.1098/rsfs.2011.0021.
  • [12] M. Giaquinta and E. Giusti, Global $ C^{1,\alpha }$-regularity for second order quasilinear elliptic equations in divergence form, J. Reine Angew. Math. 351 (1984), 55-65. MR 749677 (85k:35077)
  • [13] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin, 1977. MR 0473443 (57 #13109)
  • [14] Pedro González-Rodríguez and Arnold D. Kim, Reflectance optical tomography in epithelial tissues, Inverse Problems 25 (2009), no. 1, 015001, 24. MR 2465333 (2010d:92069), https://doi.org/10.1088/0266-5611/25/1/015001
  • [15] Damon Hyde, Misha Kilmer, Dana H. Brooks, and Eric Miller, Analysis and exploitation of matrix structure arising in linearized optical tomographic imaging, SIAM J. Matrix Anal. Appl. 29 (2007), no. 4, 1065-1082. MR 2369284 (2008m:65096), https://doi.org/10.1137/060657285
  • [16] Kimberly Kilgore, Shari Moskow, and John C. Schotland, Inverse Born series for diffuse waves, Imaging microstructures, Contemp. Math., vol. 494, Amer. Math. Soc., Providence, RI, 2009, pp. 113-122. MR 2581769 (2011d:35517), https://doi.org/10.1090/conm/494/09646
  • [17] Olga A. Ladyzhenskaya and Nina N. Uraltseva, Linear and quasilinear elliptic equations, translated from the Russian by Scripta Technica, Inc., translation editor: Leon Ehrenpreis, Academic Press, New York, 1968. MR 0244627 (39 #5941)
  • [18] Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203-1219. MR 969499 (90a:35098), https://doi.org/10.1016/0362-546X(88)90053-3
  • [19] Gary M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), no. 2-3, 311-361. MR 1104103 (92c:35041), https://doi.org/10.1080/03605309108820761
  • [20] Nguyen Hoang Loc and Klaus Schmitt, On positive solutions of quasilinear elliptic equations, Differential Integral Equations 22 (2009), no. 9-10, 829-842. MR 2553058 (2010k:35199)
  • [21] V. A. Markel and J. C. Schotland, Symmetries, inversion formulas, and image reconstruction for optical tomography, Phys. Rev. E 70 (2004), 056616.
  • [22] Shari Moskow and John C. Schotland, Convergence and stability of the inverse scattering series for diffuse waves, Inverse Problems 24 (2008), no. 6, 065005, 16. MR 2456952 (2010b:35488), https://doi.org/10.1088/0266-5611/24/6/065005
  • [23] Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall Inc., Englewood Cliffs, N.J., 1967. MR 0219861 (36 #2935)
  • [24] M. C. W. van Rossum and Th. M. Nieuwenhuizen, Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion, Rev. Modern Phys. 71 (1999), 313-371.
  • [25] Leonid Ryzhik, George Papanicolaou, and Joseph B. Keller, Transport equations for elastic and other waves in random media, Wave Motion 24 (1996), no. 4, 327-370. MR 1427483 (98k:35199), https://doi.org/10.1016/S0165-2125(96)00021-2
  • [26] J. C. Schotland, Direct reconstruction methods in optical tomography, Lecture Notes in Math., vol. 2035, Springer, Heidelberg, 2012, pp. 1-29. MR 3024668
  • [27] J. C. Schotland and V. A. Markel, Inverse scattering with diffusing waves, J. Opt. Soc. Amer. A 18 (2001), 2767-2777.
  • [28] L. V. Wang, Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model, Phys. Rev. Lett. 87 (2001), 043903.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 65R32, 44A12, 31B20

Retrieve articles in all journals with MSC (2010): 65R32, 44A12, 31B20


Additional Information

Habib Ammari
Affiliation: Department of Mathematics and Applications, Ecole Normale Supérieure, 45 Rue d’Ulm, 75005 Paris, France
Email: habib.ammari@ens.fr

Emmanuel Bossy
Affiliation: Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, 10 rue Vauquelin, 75231 Paris Cedex 05, France
Email: emmanuel.bossy@espci.fr

Josselin Garnier
Affiliation: Laboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques-Louis Lions, Université Paris VII, 75205 Paris Cedex 13, France
Email: garnier@math.jussieu.fr

Loc Hoang Nguyen
Affiliation: Department of Mathematics and Applications, Ecole Normale Supérieure, 45 Rue d’Ulm, 75005 Paris, France
Email: lnguyen@dma.ens.fr

Laurent Seppecher
Affiliation: Department of Mathematics and Applications, Ecole Normale Supérieure, 45 Rue d’Ulm, 75005 Paris, France
Email: laurent.seppecher@ens.fr

DOI: https://doi.org/10.1090/S0002-9939-2014-12090-9
Keywords: Ultrasound-modulated optical imaging, diffuse optical tomography, spherical Radon transform, Helmholtz decomposition, reconstruction, convergence
Received by editor(s): February 8, 2012
Received by editor(s) in revised form: September 30, 2012
Published electronically: May 23, 2014
Additional Notes: This work was supported by the ERC Advanced Grant Project MULTIMOD–267184.
Communicated by: Walter Craig
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society