Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 
 

 

Large universal deformation rings


Author: Frauke M. Bleher
Journal: Proc. Amer. Math. Soc. 142 (2014), 3039-3047
MSC (2010): Primary 20C20; Secondary 20C05, 16G10, 16G20
DOI: https://doi.org/10.1090/S0002-9939-2014-12104-6
Published electronically: May 30, 2014
MathSciNet review: 3223360
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a series of examples of finite groups $ G$ and mod $ p$ representations $ V$ of $ G$ whose stable endomorphisms are all given by scalars such that the universal deformation ring $ R(G,V)$ of $ V$ is large in the sense that $ R(G,V)/pR(G,V)$ is isomorphic to a power series algebra in one variable.


References [Enhancements On Off] (What's this?)

  • [1] Frauke M. Bleher, Universal deformation rings and generalized quaternion defect groups, Adv. Math. 225 (2010), no. 3, 1499-1522. MR 2673738 (2011i:20013), https://doi.org/10.1016/j.aim.2010.04.004
  • [2] Frauke M. Bleher and Ted Chinburg, Universal deformation rings and cyclic blocks, Math. Ann. 318 (2000), no. 4, 805-836. MR 1802512 (2001m:20013), https://doi.org/10.1007/s002080000148
  • [3] Frauke M. Bleher, Ted Chinburg, and Bart de Smit, Inverse problems for deformation rings, Trans. Amer. Math. Soc. 365 (2013), no. 11, 6149-6165, DOI 10.1090/S0002-9947-2013-05848-5. MR 3091278
  • [4] Frauke M. Bleher, Giovanna Llosent, and Jennifer B. Schaefer, Universal deformation rings and dihedral blocks with two simple modules, J. Algebra 345 (2011), 49-71. MR 2842053 (2012h:20019), https://doi.org/10.1016/j.jalgebra.2011.08.010
  • [5] Frauke M. Bleher and José A. Vélez-Marulanda, Universal deformation rings of modules over Frobenius algebras, J. Algebra 367 (2012), 176-202. MR 2948217, https://doi.org/10.1016/j.jalgebra.2012.06.008
  • [6] Gebhard Böckle, Presentations of universal deformation rings, $ L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 24-58. MR 2392352 (2009e:11102), https://doi.org/10.1017/CBO9780511721267.003
  • [7] Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR 1064107 (91c:20016)
  • [8] Daniel Gorenstein and John H. Walter, The characterization of finite groups with dihedral Sylow $ 2$-subgroups. I, J. Algebra 2 (1965), 85-151. MR 0177032 (31 #1297a)
  • [9] B. Mazur, Deforming Galois representations, Galois groups over $ {\bf Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 385-437. MR 1012172 (90k:11057), https://doi.org/10.1007/978-1-4613-9649-9_7
  • [10] R. Rainone, On the inverse problem for deformation rings of representations. Master's thesis, Universiteit Leiden, June 2010, advisor: B. de Smit. http://www.math.leidenuniv.nl/
    en/theses/205/

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20C20, 20C05, 16G10, 16G20

Retrieve articles in all journals with MSC (2010): 20C20, 20C05, 16G10, 16G20


Additional Information

Frauke M. Bleher
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242-1419
Email: frauke-bleher@uiowa.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12104-6
Keywords: Universal deformation rings, defect groups, generalized quaternion Sylow 2-subgroups, tame blocks, cyclic blocks
Received by editor(s): April 14, 2012
Received by editor(s) in revised form: October 4, 2012
Published electronically: May 30, 2014
Additional Notes: The author was supported in part by NSA Grant H98230-11-1-0131.
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2014 Frauke M. Bleher

American Mathematical Society