Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A hyponormal weighted shift on a directed tree whose square has trivial domain


Authors: Zenon Jan Jabłoński, Il Bong Jung and Jan Stochel
Journal: Proc. Amer. Math. Soc. 142 (2014), 3109-3116
MSC (2010): Primary 47B37, 47B20; Secondary 47A05
DOI: https://doi.org/10.1090/S0002-9939-2014-12112-5
Published electronically: May 21, 2014
MathSciNet review: 3223367
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that, up to isomorphism, there are only two directed trees that admit a hyponormal weighted shift with nonzero weights whose square has trivial domain. These are precisely those enumerable (i.e., countably infinite) directed trees, one with root, the other without, whose every vertex has an enumerable set of successors. An example of a nonzero hyponormal composition operator in an $ L^2$-space whose square has trivial domain is established.


References [Enhancements On Off] (What's this?)

  • [1] N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Dover Publications Inc., New York, 1993. Translated from the Russian and with a preface by Merlynd Nestell. Reprint of the 1961 and 1963 translations. Two volumes bound as one. MR 1255973 (94i:47001)
  • [2] M. Sh. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987. Translated from the 1980 Russian original by S. Khrushchëv and V. Peller. MR 1192782 (93g:47001)
  • [3] Errett Bishop, Spectral theory for operators on a Banach space, Trans. Amer. Math. Soc. 86 (1957), 414-445. MR 0100789 (20 #7217)
  • [4] Piotr Budzyński, Zenon Jan Jabłoński, Il Bong Jung, and Jan Stochel, Unbounded subnormal weighted shifts on directed trees, J. Math. Anal. Appl. 394 (2012), no. 2, 819-834. MR 2927501, https://doi.org/10.1016/j.jmaa.2012.04.074
  • [5] Piotr Budzyński, Zenon Jan Jabłoński, Il Bong Jung, and Jan Stochel, Unbounded subnormal weighted shifts on directed trees. II, J. Math. Anal. Appl. 398 (2013), no. 2, 600-608. MR 2990085, https://doi.org/10.1016/j.jmaa.2012.08.067
  • [6] Paul R. Chernoff, A semibounded closed symmetric operator whose square has trivial domain, Proc. Amer. Math. Soc. 89 (1983), no. 2, 289-290. MR 712639 (85b:47031), https://doi.org/10.2307/2044918
  • [7] John B. Conway, The theory of subnormal operators, Mathematical Surveys and Monographs, vol. 36, American Mathematical Society, Providence, RI, 1991. MR 1112128 (92h:47026)
  • [8] Ciprian Foiaş, Décompositions en opérateurs et vecteurs propres. I. Études de ces décompositions et leurs rapports avec les prolongements des opérateurs, Rev. Math. Pures Appl. (Bucarest) 7 (1962), 241-282 (French). MR 0209874 (35 #769)
  • [9] Zenon Jan Jabłoński, Il Bong Jung, and Jan Stochel, Weighted shifts on directed trees, Mem. Amer. Math. Soc. 216 (2012), no. 1017, viii+106. MR 2919910, https://doi.org/10.1090/S0065-9266-2011-00644-1
  • [10] Zenon Jan Jabłoński, Il Bong Jung, and Jan Stochel, A non-hyponormal operator generating Stieltjes moment sequences, J. Funct. Anal. 262 (2012), no. 9, 3946-3980. MR 2899984, https://doi.org/10.1016/j.jfa.2012.02.006
  • [11] Z. J. Jabłoński, I. B. Jung, J. Stochel, Normal extensions escape from the class of weighted shifts on directed trees, Complex Anal. Oper. Theory, DOI 10.1007/s11785-011-0177-7.
  • [12] Jan Janas, On unbounded hyponormal operators, Ark. Mat. 27 (1989), no. 2, 273-281. MR 1022281 (91i:47031), https://doi.org/10.1007/BF02386376
  • [13] Jan Janas, On unbounded hyponormal operators. II, Integral Equations Operator Theory 15 (1992), no. 3, 470-478. MR 1155715 (93b:47047), https://doi.org/10.1007/BF01200330
  • [14] J. Janas, On unbounded hyponormal operators. III, Studia Math. 112 (1994), no. 1, 75-82. MR 1307601 (95m:47037)
  • [15] M. Neumark, On the square of a closed symmetric operator, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 866-870. MR 0003468 (2,224e)
  • [16] Schōichi Ōta and Konrad Schmüdgen, On some classes of unbounded operators, Integral Equations Operator Theory 12 (1989), no. 2, 211-226. MR 986595 (90d:47027), https://doi.org/10.1007/BF01195114
  • [17] Jan Stochel, An asymmetric Putnam-Fuglede theorem for unbounded operators, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2261-2271 (electronic). MR 1823908 (2002b:47038), https://doi.org/10.1090/S0002-9939-01-06127-5
  • [18] J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators. I, J. Operator Theory 14 (1985), no. 1, 31-55. MR 789376 (87d:47034)
  • [19] J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators. II, Acta Sci. Math. (Szeged) 53 (1989), no. 1-2, 153-177. MR 1018684 (91i:47032)
  • [20] Jan Stochel and Franciszek H. Szafraniec, On normal extensions of unbounded operators. III. Spectral properties, Publ. Res. Inst. Math. Sci. 25 (1989), no. 1, 105-139. MR 999353 (91i:47033), https://doi.org/10.2977/prims/1195173765
  • [21] Jan Stochel and Franciszek Hugon Szafraniec, The complex moment problem and subnormality: a polar decomposition approach, J. Funct. Anal. 159 (1998), no. 2, 432-491. MR 1658092 (2001c:47023a), https://doi.org/10.1006/jfan.1998.3284
  • [22] Franciszek Hugon Szafraniec, Sesquilinear selection of elementary spectral measures and subnormality, Elementary operators and applications (Blaubeuren, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 243-248. MR 1183950 (94g:47027)
  • [23] Franciszek Hugon Szafraniec, On normal extensions of unbounded operators. IV. A matrix construction, Operator theory and indefinite inner product spaces, Oper. Theory Adv. Appl., vol. 163, Birkhäuser, Basel, 2006, pp. 337-350. MR 2215869 (2007b:47052), https://doi.org/10.1007/3-7643-7516-7_14
  • [24] Joachim Weidmann, Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York, 1980. Translated from the German by Joseph Szücs. MR 566954 (81e:47001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B37, 47B20, 47A05

Retrieve articles in all journals with MSC (2010): 47B37, 47B20, 47A05


Additional Information

Zenon Jan Jabłoński
Affiliation: Instytut Matematyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, PL-30348 Kraków, Poland
Email: Zenon.Jablonski@im.uj.edu.pl

Il Bong Jung
Affiliation: Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
Email: ibjung@knu.ac.kr

Jan Stochel
Affiliation: Instytut Matematyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, PL-30348 Kraków, Poland
Email: Jan.Stochel@im.uj.edu.pl

DOI: https://doi.org/10.1090/S0002-9939-2014-12112-5
Keywords: Directed tree, weighted shift on a directed tree, hyponormal operator, trivial domain of square
Received by editor(s): May 6, 2011
Received by editor(s) in revised form: September 18, 2012
Published electronically: May 21, 2014
Additional Notes: The research of the first and third authors was supported by the MNiSzW (Ministry of Science and Higher Education) grant No. NN201 546438 (2010-2013)
The second author was supported by the WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (grant No. R32-2009-000-20021-0)
Communicated by: Marius Junge
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society