Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal covariance group of Wigner transforms and pseudo-differential operators


Authors: Nuno Costa Dias, Maurice A. de Gosson and João Nuno Prata
Journal: Proc. Amer. Math. Soc. 142 (2014), 3183-3192
MSC (2010): Primary 35S99, 35P05, 53D05; Secondary 35S05
DOI: https://doi.org/10.1090/S0002-9939-2014-12311-2
Published electronically: June 3, 2014
MathSciNet review: 3223374
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the linear symplectic and antisymplectic transformations form the maximal covariance group for both the Wigner transform and Weyl operators. The proof is based on a new result from symplectic geometry which characterizes symplectic and antisymplectic matrices and which allows us, in addition, to refine a classical result on the preservation of symplectic capacities of ellipsoids.


References [Enhancements On Off] (What's this?)

  • [1] P. A. M. Dirac, The principles of quantum mechanics, 3d ed., Oxford, at the Clarendon Press, 1947. MR 0023198 (9,319d)
  • [2] A. J. Dragt and S. Habib, How Wigner functions transform under symplectic maps, arXiv:quant-ph/9806056v (1998).
  • [3] Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366 (92k:22017)
  • [4] Maurice de Gosson, Symplectic geometry and quantum mechanics, Operator Theory: Advances and Applications, vol. 166, Advances in Partial Differential Equations (Basel), Birkhäuser Verlag, Basel, 2006. MR 2241188 (2007e:81050)
  • [5] Maurice A. de Gosson, Symplectic methods in harmonic analysis and in mathematical physics, Pseudo-Differential Operators. Theory and Applications, vol. 7, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2827662 (2012m:53175)
  • [6] Maurice de Gosson, A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms, J. Pseudo-Differ. Oper. Appl. 2 (2011), no. 1, 91-99. MR 2781143 (2012c:81118), https://doi.org/10.1007/s11868-011-0023-8
  • [7] Maurice A. de Gosson, Symplectic covariance properties for Shubin and Born-Jordan pseudo-differential operators, Trans. Amer. Math. Soc. 365 (2013), no. 6, 3287-3307. MR 3034466, https://doi.org/10.1090/S0002-9947-2012-05742-4
  • [8] Maurice de Gosson and Franz Luef, Quantum states and Hardy's formulation of the uncertainty principle: a symplectic approach, Lett. Math. Phys. 80 (2007), no. 1, 69-82. MR 2314845 (2008j:81071), https://doi.org/10.1007/s11005-007-0150-6
  • [9] Maurice de Gosson and Franz Luef, Symplectic capacities and the geometry of uncertainty: the irruption of symplectic topology in classical and quantum mechanics, Phys. Rep. 484 (2009), no. 5, 131-179. MR 2559681 (2010k:53148), https://doi.org/10.1016/j.physrep.2009.08.001
  • [10] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347. MR 809718 (87j:53053), https://doi.org/10.1007/BF01388806
  • [11] G. H. Hardy, A theorem concerning Fourier transforms, J. London Math. Soc. S1-8, no. 3, 227. MR 1574130, https://doi.org/10.1112/jlms/s1-8.3.227
  • [12] Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1306732 (96g:58001)
  • [13] Jean Leray, Lagrangian analysis and quantum mechanics, A mathematical structure related to asymptotic expansions and the Maslov index, translated from the French by Carolyn Schroeder. MIT Press, Cambridge, Mass., 1981. MR 644633 (83k:58081a)
  • [14] Leonid Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. MR 1826128 (2002g:53157)
  • [15] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer-Verlag, 1987 [original Russian edition in Nauka, Moskva, 1978]. MR 0883081 (88c:47105)
  • [16] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, with the assistance of Timothy S. Murphy, Princeton Mathematical Series, vol. 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • [17] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932), 799-755.
  • [18] John Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math. 58 (1936), no. 1, 141-163. MR 1507138, https://doi.org/10.2307/2371062
  • [19] M. W. Wong, Weyl transforms, Universitext, Springer-Verlag, New York, 1998. MR 1639461 (2000c:47098)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35S99, 35P05, 53D05, 35S05

Retrieve articles in all journals with MSC (2010): 35S99, 35P05, 53D05, 35S05


Additional Information

Nuno Costa Dias
Affiliation: Departamento de Matemática, Universidade Lusófona, Av. Campo Grande, 376, 1749-024 Lisboa, Portugal
Email: ncdias@meo.pt

Maurice A. de Gosson
Affiliation: Faculty of Mathematics, NuHAG, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria
Email: maurice.de.gosson@univie.ac.at

João Nuno Prata
Affiliation: Departamento de Matemática, Universidade Lusófona, Av. Campo Grande, 376, 1749-024 Lisboa, Portugal
Email: joao.prata@mail.telepac.pt

DOI: https://doi.org/10.1090/S0002-9939-2014-12311-2
Keywords: Wigner transform, symplectic covariance, Weyl operator
Received by editor(s): October 7, 2012
Published electronically: June 3, 2014
Additional Notes: The first author was supported by a research grant from the Austrian Research Agency FWF (Projektnummer P23902-N13)
The second and third authors were supported by the research grant PTDC/MAT/099880/2008 of the Portuguese Science Foundation
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society