Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weighted norm inequalities for $ k$-plane transforms


Author: B. Rubin
Journal: Proc. Amer. Math. Soc. 142 (2014), 3455-3467
MSC (2010): Primary 44A12; Secondary 47G10
DOI: https://doi.org/10.1090/S0002-9939-2014-11987-3
Published electronically: June 2, 2014
MathSciNet review: 3238421
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain sharp inequalities for the $ k$-plane transform, the ``$ j$-plane to $ k$-plane'' transform, and the corresponding dual transforms, acting on $ L^p$ spaces with a radial power weight. The operator norms are explicitly evaluated. Some generalizations and open problems are discussed.


References [Enhancements On Off] (What's this?)

  • [1] Carlos A. Berenstein, Enrico Casadio Tarabusi, and Árpád Kurusa, Radon transform on spaces of constant curvature, Proc. Amer. Math. Soc. 125 (1997), no. 2, 455-461. MR 1350933 (97d:53074), https://doi.org/10.1090/S0002-9939-97-03570-3
  • [2] Carlos A. Berenstein and Boris Rubin, Radon transform of $ L^p$-functions on the Lobachevsky space and hyperbolic wavelet transforms, Forum Math. 11 (1999), no. 5, 567-590. MR 1705903 (2000e:44001), https://doi.org/10.1515/form.1999.014
  • [3] A. P. Calderón, On the Radon transform and some of its generalizations, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 673-689. MR 730101 (86h:44002)
  • [4] Michael Christ, Estimates for the $ k$-plane transform, Indiana Univ. Math. J. 33 (1984), no. 6, 891-910. MR 763948 (86k:44004), https://doi.org/10.1512/iumj.1984.33.33048
  • [5] Michael Christ, Extremizers of a Radon transform inequality, arXiv:1106.0719v1, 2011.
  • [6] S. W. Drury, An endpoint estimate for certain $ k$-plane transforms, Canad. Math. Bull. 29 (1986), no. 1, 96-101. MR 824891 (87i:44002), https://doi.org/10.4153/CMB-1986-018-3
  • [7] S. W. Drury, A survey of $ k$-plane transform estimates, Commutative harmonic analysis (Canton, NY, 1987) Contemp. Math., vol. 91, Amer. Math. Soc., Providence, RI, 1989, pp. 43-55. MR 1002587 (92b:44002), https://doi.org/10.1090/conm/091/1002587
  • [8] Javier Duoandikoetxea, Virginia Naibo, and Osane Oruetxebarria, $ k$-plane transforms and related operators on radial functions, Michigan Math. J. 49 (2001), no. 2, 265-276. MR 1852303 (2002g:42017), https://doi.org/10.1307/mmj/1008719773
  • [9] M. Burak Erdoğan and Richard Oberlin, Estimates for the $ X$-ray transform restricted to 2-manifolds, Rev. Mat. Iberoam. 26 (2010), no. 1, 91-114. MR 2666309 (2011d:42040), https://doi.org/10.4171/RMI/595
  • [10] K. J. Falconer, Continuity properties of $ k$-plane integrals and Besicovitch sets, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 2, 221-226. MR 553579 (81c:53067), https://doi.org/10.1017/S0305004100056681
  • [11] I. M. Gelfand, S. G. Gindikin, and M. I. Graev, Selected topics in integral geometry, Translations of Mathematical Monographs, vol. 220, American Mathematical Society, Providence, RI, 2003. Translated from the 2000 Russian original by A. Shtern. MR 2000133 (2004f:53092)
  • [12] Fulton B. Gonzalez and Tomoyuki Kakehi, Pfaffian systems and Radon transforms on affine Grassmann manifolds, Math. Ann. 326 (2003), no. 2, 237-273. MR 1990910 (2004f:53093), https://doi.org/10.1007/s00208-002-0398-1
  • [13] Allan Greenleaf, Andreas Seeger, and Stephen Wainger, Estimates for generalized Radon transforms in three and four dimensions, Contemp. Math., vol. 251, Amer. Math. Soc., Providence, RI, 2000, pp. 243-254. MR 1771272 (2001j:58047), https://doi.org/10.1090/conm/251/03873
  • [14] Philip T. Gressman, Sharp $ L^p$-$ L^q$ estimates for generalized $ k$-plane transforms, Adv. Math. 214 (2007), no. 1, 344-365. MR 2348034 (2008m:47047), https://doi.org/10.1016/j.aim.2007.01.018
  • [15] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR 944909 (89d:26016)
  • [16] Sigurdur Helgason, Integral geometry and Radon transforms, Springer, New York, 2011. MR 2743116 (2011m:53144)
  • [17] A. Iosevich and E. Sawyer, Sharp $ L^p$-$ L^q$ estimates for a class of averaging operators, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 5, 1359-1384 (English, with English and French summaries). MR 1427130 (98a:42008)
  • [18] Ashisha Kumar and Swagato K. Ray, Mixed norm estimate for Radon transform on weighted $ L^p$ spaces, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), no. 4, 441-456. MR 2761772 (2011k:44005), https://doi.org/10.1007/s12044-010-0043-y
  • [19] Ashisha Kumar and Swagato K. Ray, Weighted estimates for the $ k$-plane transform of radial functions on Euclidean spaces, Israel J. Math. 188 (2012), 25-56. MR 2897722, https://doi.org/10.1007/s11856-011-0091-8
  • [20] Ashisha Kumar and Swagato K. Ray, End point estimates for Radon transform of radial functions on non-Euclidean spaces, Monatsh. Math. 174 (2014), no. 1, 41-75. MR 3190770
  • [21] Árpád Kurusa, Support theorems for totally geodesic Radon transforms on constant curvature spaces, Proc. Amer. Math. Soc. 122 (1994), no. 2, 429-435. MR 1198457 (95a:53111), https://doi.org/10.2307/2161033
  • [22] Izabella Łaba and Terence Tao, An x-ray transform estimate in $ \mathbb{R}^n$, Rev. Mat. Iberoamericana 17 (2001), no. 2, 375-407. MR 1891202 (2003a:44003), https://doi.org/10.4171/RMI/298
  • [23] F. Natterer, The mathematics of computerized tomography, Classics in Applied Mathematics, vol. 32, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Reprint of the 1986 original. MR 1847845 (2002e:00008)
  • [24] D. M. Oberlin and E. M. Stein, Mapping properties of the Radon transform, Indiana Univ. Math. J. 31 (1982), no. 5, 641-650. MR 667786 (84a:44002), https://doi.org/10.1512/iumj.1982.31.31046
  • [25] Elena Ournycheva and Boris Rubin, Semyanistyi's integrals and Radon transforms on matrix spaces, J. Fourier Anal. Appl. 14 (2008), no. 1, 60-88. MR 2379753 (2009b:42014), https://doi.org/10.1007/s00041-007-9002-0
  • [26] Eric Todd Quinto, Null spaces and ranges for the classical and spherical Radon transforms, J. Math. Anal. Appl. 90 (1982), no. 2, 408-420. MR 680167 (85e:44004), https://doi.org/10.1016/0022-247X(82)90069-5
  • [27] Fulvio Ricci and Giancarlo Travaglini, Convex curves, Radon transforms and convolution operators defined by singular measures, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1739-1744 (electronic). MR 1814105 (2002i:42010), https://doi.org/10.1090/S0002-9939-00-05751-8
  • [28] Boris Rubin, Reconstruction of functions from their integrals over $ k$-planes, Israel J. Math. 141 (2004), 93-117. MR 2063027 (2005b:44004), https://doi.org/10.1007/BF02772213
  • [29] Boris Rubin, Radon transforms on affine Grassmannians, Trans. Amer. Math. Soc. 356 (2004), no. 12, 5045-5070 (electronic). MR 2084410 (2005e:44004), https://doi.org/10.1090/S0002-9947-04-03508-1
  • [30] S. G. Samko, Proof of the Babenko-Stein theorem, Izv. Vysš. Učebn. Zaved. Matematika 5(156) (1975), 47-51 (Russian). MR 0387979 (52 #8816)
  • [31] I. Schur, Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28.
  • [32] V. I. Semjanistyĭ, Homogeneous functions and some problems of integral geometry in the spaces of constant curvature, Soviet Math. Dokl. 2 (1961), 59-62. MR 0133006 (24 #A2842)
  • [33] Donald C. Solmon, A note on $ k$-plane integral transforms, J. Math. Anal. Appl. 71 (1979), no. 2, 351-358. MR 548770 (80m:44010), https://doi.org/10.1016/0022-247X(79)90196-3
  • [34] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)
  • [35] Robert S. Strichartz, $ L^{p}$ estimates for integral transforms, Trans. Amer. Math. Soc. 136 (1969), 33-50. MR 0234321 (38 #2638)
  • [36] Robert S. Strichartz, $ L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J. 48 (1981), no. 4, 699-727. MR 782573 (86k:43008), https://doi.org/10.1215/S0012-7094-81-04839-0
  • [37] Thomas Wolff, A mixed norm estimate for the X-ray transform, Rev. Mat. Iberoamericana 14 (1998), no. 3, 561-600. MR 1681585 (2000j:44006), https://doi.org/10.4171/RMI/245

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 44A12, 47G10

Retrieve articles in all journals with MSC (2010): 44A12, 47G10


Additional Information

B. Rubin
Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
Email: borisr@math.lsu.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-11987-3
Keywords: Radon transforms, weighted norm estimates
Received by editor(s): July 7, 2012
Received by editor(s) in revised form: October 8, 2012
Published electronically: June 2, 2014
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society