Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Maximal operators associated to multiplicative characters


Authors: Allison Lewko and Mark Lewko
Journal: Proc. Amer. Math. Soc. 142 (2014), 3315-3323
MSC (2010): Primary 11L40, 42B05
DOI: https://doi.org/10.1090/S0002-9939-2014-12042-9
Published electronically: July 9, 2014
MathSciNet review: 3238409
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the natural analogue of the Carleson-Hunt inequality fails for multiplicative characters.


References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain, On Kolmogorov's rearrangement problem for orthogonal systems and Garsia's conjecture, Geometric aspects of functional analysis (1987-88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 209-250. MR 1008725 (90i:42044), https://doi.org/10.1007/BFb0090057
  • [2] Étienne Fouvry, Théorème de Brun-Titchmarsh: application au théorème de Fermat, Invent. Math. 79 (1985), no. 2, 383-407 (French). MR 778134 (86g:11052), https://doi.org/10.1007/BF01388980
  • [3] C. Hooley, On theorems of Barban-Davenport-Halberstam type, Number theory for the millennium, II (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 195-228. MR 1956252 (2004g:11084)
  • [4] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience, John Wiley & Sons, New York, 1974. MR 0419394 (54 #7415)
  • [5] Allison Lewko and Mark Lewko, A variational Barban-Davenport-Halberstam theorem, J. Number Theory 132 (2012), no. 9, 2020-2045. MR 2925860, https://doi.org/10.1016/j.jnt.2012.02.007
  • [6] Hugh L. Montgomery, Maximal variants of the large sieve, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 805-812 (1982). MR 656055 (83g:10033)
  • [7] H. L. Montgomery and R. C. Vaughan, Mean values of character sums, Canad. J. Math. 31 (1979), no. 3, 476-487. MR 536358 (81c:10043), https://doi.org/10.4153/CJM-1979-053-2
  • [8] Saburô Nakata, On the divergence of rearranged Fourier series of square integrable functions, Acta Sci. Math. (Szeged) 32 (1971), 59-70. MR 0435711 (55 #8669)
  • [9] Saburô Nakata, On the divergence of rearranged trigonometric series, Tôhoku Math. J. (2) 27 (1975), no. 2, 241-246. MR 0407519 (53 #11294)
  • [10] Wolfgang M. Schmidt, Equations over finite fields. An elementary approach, Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin, 1976. MR 0429733 (55 #2744)
  • [11] Saburô Uchiyama, The maximal large sieve, Hokkaido Math. J. 1 (1972), 117-126. MR 0321896 (48 #261)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11L40, 42B05

Retrieve articles in all journals with MSC (2010): 11L40, 42B05


Additional Information

Allison Lewko
Affiliation: Microsoft Research New England, One Memorial Drive, Cambridge, Massachusetts 02142
Address at time of publication: Department of Computer Science, Columbia University, 519 CSB, 1214 Amsterdam Avenue MC 0401, New York, New York 10027
Email: alewko@cs.columbia.edu

Mark Lewko
Affiliation: Department of Mathematics, The University of California Los Angeles, Los Angeles, California 90024
Email: mlewko@math.ucla.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12042-9
Received by editor(s): July 10, 2012
Received by editor(s) in revised form: September 19, 2012
Published electronically: July 9, 2014
Additional Notes: The first author was supported by a Microsoft Research Ph.D. Fellowship during the completion of this work
The second author was supported by an NSF Postdoctoral Fellowship, DMS-1204206
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society