Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On cohomological decomposability of almost-Kähler structures


Authors: Daniele Angella, Adriano Tomassini and Weiyi Zhang
Journal: Proc. Amer. Math. Soc. 142 (2014), 3615-3630
MSC (2010): Primary 53C55, 53C25, 32G05
DOI: https://doi.org/10.1090/S0002-9939-2014-12049-1
Published electronically: July 10, 2014
MathSciNet review: 3238437
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the $ J$-invariant and $ J$-anti-invariant cohomological subgroups of the de Rham cohomology of a compact manifold $ M$ endowed with an almost-Kähler structure $ \left (J,\,\omega ,\,g\right )$. In particular, almost-Kähler manifolds satisfying a Lefschetz type property and solvmanifolds endowed with left-invariant almost-complex structures are investigated.


References [Enhancements On Off] (What's this?)

  • [1] Daniele Angella and Adriano Tomassini, On cohomological decomposition of almost-complex manifolds and deformations, J. Symplectic Geom. 9 (2011), no. 3, 403-428. MR 2817781 (2012k:32037)
  • [2] Daniele Angella and Adriano Tomassini, On the cohomology of almost-complex manifolds, Internat. J. Math. 23 (2012), no. 2, 1250019, 25. MR 2890470, https://doi.org/10.1142/S0129167X11007604
  • [3] D. Angella and A. Tomassini, On the $ \partial \overline {\partial }$-lemma and Bott-Chern cohomology, Invent. Math. 192 (2013), no. 1, 71-81, DOI 10.1007/s00222-012-0406-3. MR 3032326
  • [4] Florin Alexandru Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), no. 1, 1-40. MR 1760667 (2002c:32027), https://doi.org/10.1007/s002080050357
  • [5] Chal Benson and Carolyn S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513-518. MR 976592 (90b:53042), https://doi.org/10.1016/0040-9383(88)90029-8
  • [6] Jean-Luc Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), no. 1, 93-114. MR 950556 (89m:58006)
  • [7] G. R. Cavalcanti, New aspects of the $ dd^{\mathrm {c}}$-lemma, Oxford University D.Phil. thesis, arXiv:math/0501406v1 [math.DG].
  • [8] S. Console and A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform. Groups 6 (2001), no. 2, 111-124. MR 1835667 (2002c:53119), https://doi.org/10.1007/BF01597131
  • [9] Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245-274. MR 0382702 (52 #3584)
  • [10] S. K. Donaldson, Two-forms on four-manifolds and elliptic equations, Inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 153-172. MR 2313334 (2008c:53090), https://doi.org/10.1142/9789812772688_0007
  • [11] Tedi Draghici, Tian-Jun Li, and Weiyi Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. IMRN 1 (2010), 1-17. MR 2576281 (2011g:53151), https://doi.org/10.1093/imrn/rnp113
  • [12] T. Draghici, T.-J. Li, and W. Zhang, On the $ J$-anti-invariant cohomology of almost complex $ 4$-manifolds, Q. J. Math. 64 (2013), no. 1, 83-111, DOI 10.1093/qmath/har034. MR 3032090
  • [13] T. Draghici, T.-J. Li, and W. Zhang, Geometry of tamed almost complex structures on $ 4$-dimensional manifolds, ICCM2010 Proceedings, AMS/IP Stud. Adv. Math., 51, pt. 1, 2, Amer. Math. Soc., Providence, RI, 2012, pp. 233-251. MR 2908071
  • [14] M. Fernández, V. Muñoz, and J. A. Santisteban, Cohomologically Kähler manifolds with no Kähler metrics, Int. J. Math. Math. Sci. 2003, no. 52, 3315-3325. MR 2015766 (2004i:53122)
  • [15] Anna Fino and Adriano Tomassini, On some cohomological properties of almost complex manifolds, J. Geom. Anal. 20 (2010), no. 1, 107-131. MR 2574723 (2010k:32036), https://doi.org/10.1007/s12220-009-9098-3
  • [16] Marco Gualtieri, Generalized complex geometry, Ann. of Math. (2) 174 (2011), no. 1, 75-123. MR 2811595 (2012h:53185), https://doi.org/10.4007/annals.2011.174.1.3
  • [17] Keizo Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65-71. MR 946638 (89i:32015), https://doi.org/10.2307/2047375
  • [18] Keizo Hasegawa, A note on compact solvmanifolds with Kähler structures, Osaka J. Math. 43 (2006), no. 1, 131-135. MR 2222405 (2007h:32035)
  • [19] Akio Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289-331 (1960). MR 0124918 (23 #A2226)
  • [20] Tian-Jun Li and Weiyi Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-683. MR 2601348 (2011e:32036)
  • [21] A. I. Malcev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9-32 (Russian). MR 0028842 (10,507d)
  • [22] Olivier Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment. Math. Helv. 70 (1995), no. 1, 1-9. MR 1314938 (96e:58004), https://doi.org/10.1007/BF02565997
  • [23] S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Internat. Math. Res. Notices 14 (1998), 727-733. MR 1637093 (99j:58078), https://doi.org/10.1155/S1073792898000439
  • [24] John Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293-329. MR 0425012 (54 #12970)
  • [25] Katsumi Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), 531-538. MR 0064057 (16,219c)
  • [26] Jeffrey Streets and Gang Tian, A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN 16 (2010), 3101-3133. MR 2673720 (2011h:53091), https://doi.org/10.1093/imrn/rnp237
  • [27] Dong Yan, Hodge structure on symplectic manifolds, Adv. Math. 120 (1996), no. 1, 143-154. MR 1392276 (97e:58004), https://doi.org/10.1006/aima.1996.0034

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C55, 53C25, 32G05

Retrieve articles in all journals with MSC (2010): 53C55, 53C25, 32G05


Additional Information

Daniele Angella
Affiliation: Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127, Pisa, Italy
Email: angella@mail.dm.unipi.it

Adriano Tomassini
Affiliation: Dipartimento di Matematica e Informatica, Università di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy
Email: adriano.tomassini@unipr.it

Weiyi Zhang
Affiliation: Department of Mathematics, 1825 East Hall, University of Michigan, Ann Arbor, Michigan 48109
Email: wyzhang@umich.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12049-1
Keywords: $\mathcal{C}^\infty$-pure-and-full structure, $J$-anti-invariant cohomology, almost-K\"ahler structure
Received by editor(s): April 18, 2012
Received by editor(s) in revised form: September 14, 2012, and October 25, 2012
Published electronically: July 10, 2014
Additional Notes: The first and second authors were partially supported by GNSAGA of INdAM
Communicated by: Franc Forstneric
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society