Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Linear independence of certain Lambert series


Authors: Florian Luca and Yohei Tachiya
Journal: Proc. Amer. Math. Soc. 142 (2014), 3411-3419
MSC (2010): Primary 11J72
DOI: https://doi.org/10.1090/S0002-9939-2014-12102-2
Published electronically: June 25, 2014
MathSciNet review: 3238417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ q\ne 0,\pm 1$ and $ \ell \ge 1$ are fixed integers, then the numbers

$\displaystyle 1,\quad \sum _{n= 1} \frac {1}{q^{n}-1},\quad \sum _{n=1}^{\infty... ...{q^{n^2}-1},\quad \dots ,\quad \sum _{n=1}^{\infty }\frac {1}{q^{n^{\ell }}-1} $

are linearly independent over $ {\mathbb{Q}}$. This generalizes a result of Erdős, who treated the case $ \ell =1$. The method is based on the original approaches of Chowla and Erdős, together with some results about primes in arithmetic progressions with large moduli of Ahlford, Granville and Pomerance.

References [Enhancements On Off] (What's this?)

  • [1] W. R. Alford, Andrew Granville, and Carl Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), no. 3, 703-722. MR 1283874 (95k:11114), https://doi.org/10.2307/2118576
  • [2] Peter B. Borwein, On the irrationality of $ \sum (1/(q^n+r))$, J. Number Theory 37 (1991), no. 3, 253-259. MR 1096442 (92b:11046), https://doi.org/10.1016/S0022-314X(05)80041-1
  • [3] Peter B. Borwein, On the irrationality of certain series, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 1, 141-146. MR 1162938 (93g:11074), https://doi.org/10.1017/S030500410007081X
  • [4] Peter Bundschuh and Keijo Väänänen, Linear independence of $ q$-analogues of certain classical constants, Results Math. 47 (2005), no. 1-2, 33-44. MR 2129575 (2006b:11078), https://doi.org/10.1007/BF03323010
  • [5] S. Chowla, On series of the Lambert type which assume irrational values for rational values of the argument, Proc. Nat. Inst. Sci. India 13 (1947), 171-173. MR 0024472 (9,500f)
  • [6] D. Duverney, Arithmetical functions and irrationality of Lambert series, in Diophantine analysis and related fields 2011, AIP Conf. Proc., 1385, 2011, pp. 5-16.
  • [7] P. Erdös, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.) 12 (1948), 63-66. MR 0029405 (10,594c)
  • [8] P. Erdős and M. Graham, Old and new problems and results in combinatorial number theory, Enseign. Math. Monograph, 28, Université de Genève, L'Enseignement Mathématique, Geneva, 1980. MR 0592420 (82j:10001)
  • [9] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 0137689 (25 #1139)
  • [10] Yohei Tachiya, Irrationality of certain Lambert series, Tokyo J. Math. 27 (2004), no. 1, 75-85. MR 2060075 (2005g:11130), https://doi.org/10.3836/tjm/1244208475
  • [11] Wadim Zudilin, Heine's basic transform and a permutation group for $ q$-harmonic series, Acta Arith. 111 (2004), no. 2, 153-164. MR 2039419 (2005f:11148), https://doi.org/10.4064/aa111-2-4
  • [12] W. Zudilin, Approximations to $ q$-logarithms and $ q$-dilogarithms, with applications to $ q$-zeta values, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 322 (2005), Trudy po Teorii Chisel (English, with English and Russian summaries), 107-124, 253-254; English transl., J. Math. Sci. (N. Y.) 137 (2006), no. 2, 4673-4683. MR 2138454 (2006h:11088), https://doi.org/10.1007/s10958-006-0263-y

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11J72

Retrieve articles in all journals with MSC (2010): 11J72


Additional Information

Florian Luca
Affiliation: Centro de Ciencias Matemáticas, Universidad Nacional Autonoma de México, C.P. 58089, Morelia, Michoacán, México
Address at time of publication: Mathematical Institute, UNAM Juriquilla, 76230 Santiago de Querétaro, Mexico – and – School of Mathematics, University of the Witwatersrand, P. O. Box Wits 2050, South Africa
Email: fluca@matmor.unam.mx

Yohei Tachiya
Affiliation: Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
Email: tachiya@cc.hirosaki-u-ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2014-12102-2
Received by editor(s): August 16, 2012
Received by editor(s) in revised form: October 31, 2012
Published electronically: June 25, 2014
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society