Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On non-pure forms on almost complex manifolds


Authors: Richard Hind, Costantino Medori and Adriano Tomassini
Journal: Proc. Amer. Math. Soc. 142 (2014), 3909-3922
MSC (2010): Primary 32Q60, 53C15, 58A12
DOI: https://doi.org/10.1090/S0002-9939-2014-11578-4
Published electronically: July 22, 2014
MathSciNet review: 3251731
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 2009 T.-J. Li and W. Zhang defined an almost complex structure $ J$ on a manifold $ X$ to be $ \mathcal {C}^\infty $-pure-and-full if the second de Rham cohomology group can be decomposed as a direct sum of the subgroups whose elements are cohomology classes admitting $ J$-invariant and $ J$-anti-invariant representatives. It turns out (see T. Draghici, T.-J. Li and W. Zhang (2010)) that any almost complex structure on a $ 4$-dimensional compact manifold is $ \mathcal {C}^\infty $-pure-and-full. We study the $ J$-invariant and $ J$-anti-invariant cohomology subgroups on almost complex manifolds, possibly non-compact. In particular, we prove an analytic continuation result for anti-invariant forms on almost complex manifolds.


References [Enhancements On Off] (What's this?)

  • [1] Daniele Angella and Adriano Tomassini, On cohomological decomposition of almost-complex manifolds and deformations, J. Symplectic Geom. 9 (2011), no. 3, 403-428. MR 2817781 (2012k:32037)
  • [2] Daniele Angella and Adriano Tomassini, On the cohomology of almost-complex manifolds, Internat. J. Math. 23 (2012), no. 2, 1250019, 25. MR 2890470, https://doi.org/10.1142/S0129167X11007604
  • [3] D. Angella, A. Tomassini, and W. Zhang, On cohomological decomposability of almost-Kähler structures, to appear in Proc. Amer. Math. Soc. DOI 10.1090/S0002-9939-2014-12049-1
  • [4] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235-249. MR 0092067 (19,1056c)
  • [5] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304 (83i:57016)
  • [6] Sylvain Cappell, Dennis DeTurck, Herman Gluck, and Edward Y. Miller, Cohomology of harmonic forms on Riemannian manifolds with boundary, Forum Math. 18 (2006), no. 6, 923-931. MR 2278607 (2008c:58003), https://doi.org/10.1515/FORUM.2006.046
  • [7] J.-P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-
    grenoble.fr/$ \sim $demailly/manuscripts/agbook.pdf, 2009.
  • [8] Georges de Rham, Differentiable manifolds, Forms, currents, harmonic forms; translated from the French by F. R. Smith, with an introduction by S. S. Chern. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 266, Springer-Verlag, Berlin, 1984. MR 760450 (85m:58005)
  • [9] Tedi Draghici, Tian-Jun Li, and Weiyi Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. IMRN 1 (2010), 1-17. MR 2576281 (2011g:53151), https://doi.org/10.1093/imrn/rnp113
  • [10] T. Draghici, T.-J. Li, and W. Zhang, On the $ J$-anti-invariant cohomology of almost complex $ 4$-manifolds, Q. J. Math. 64 (2013), no. 1, 83-111. MR 3032090
  • [11] Y. Eliashberg and N. Mishachev, Introduction to the $ h$-principle, Graduate Studies in Mathematics, vol. 48, American Mathematical Society, Providence, RI, 2002. MR 1909245 (2003g:53164)
  • [12] Anna Fino and Adriano Tomassini, On some cohomological properties of almost complex manifolds, J. Geom. Anal. 20 (2010), no. 1, 107-131. MR 2574723 (2010k:32036), https://doi.org/10.1007/s12220-009-9098-3
  • [13] M. L. Gromov, Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 707-734 (Russian). MR 0263103 (41 #7708)
  • [14] Dominic D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. MR 1787733 (2001k:53093)
  • [15] Jerry L. Kazdan, Unique continuation in geometry, Comm. Pure Appl. Math. 41 (1988), no. 5, 667-681. MR 948075 (89k:35039), https://doi.org/10.1002/cpa.3160410508
  • [16] Tian-Jun Li and Weiyi Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-683. MR 2601348 (2011e:32036), https://doi.org/10.4310/CAG.2009.v17.n4.a4
  • [17] Dusa McDuff and Dietmar Salamon, $ J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2004. MR 2045629 (2004m:53154)
  • [18] Jean-Claude Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry, Progr. Math., vol. 117, Birkhäuser, Basel, 1994, pp. 165-189. MR 1274929

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32Q60, 53C15, 58A12

Retrieve articles in all journals with MSC (2010): 32Q60, 53C15, 58A12


Additional Information

Richard Hind
Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email: hind.1@nd.edu

Costantino Medori
Affiliation: Dipartimento di Matematica e Informatica, Università di Parma, Viale Parco Area delle Scienze 53/A, 43124, Parma, Italy
Email: costantino.medori@unipr.it

Adriano Tomassini
Affiliation: Dipartimento di Matematica e Informatica, Università di Parma, Viale Parco Area delle Scienze 53/A, 43124, Parma, Italy
Email: adriano.tomassini@unipr.it

DOI: https://doi.org/10.1090/S0002-9939-2014-11578-4
Keywords: Pure and full almost complex structure, $J$-invariant form, $J$-anti-invariant form
Received by editor(s): August 30, 2011
Received by editor(s) in revised form: October 12, 2012, and December 14, 2012
Published electronically: July 22, 2014
Additional Notes: Partially supported by Fondazione Bruno Kessler-CIRM (Trento) and by GNSAGA of INdAM
Communicated by: Franc Forstneric
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society