A Fourier restriction theorem based on convolution powers

Author:
Xianghong Chen

Journal:
Proc. Amer. Math. Soc. **142** (2014), 3897-3901

MSC (2010):
Primary 42B10, 42B99

Published electronically:
July 21, 2014

MathSciNet review:
3251729

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a Fourier restriction estimate under the assumption that certain convolution power of the measure admits an -integrable density.

**[1]**Jong-Guk Bak and David McMichael,*Convolution of a measure with itself and a restriction theorem*, Proc. Amer. Math. Soc.**125**(1997), no. 2, 463–470. MR**1350932**, 10.1090/S0002-9939-97-03569-7**[2]**Jong-Guk Bak and Andreas Seeger,*Extensions of the Stein-Tomas theorem*, Math. Res. Lett.**18**(2011), no. 4, 767–781. MR**2831841**, 10.4310/MRL.2011.v18.n4.a14**[3]**Kenneth Falconer,*Fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR**1102677****[4]**Charles Fefferman,*Inequalities for strongly singular convolution operators*, Acta Math.**124**(1970), 9–36. MR**0257819**- [5]
Kyle
Hambrook and Izabella
Łaba,
*On the sharpness of Mockenhaupt’s restriction theorem*, Geom. Funct. Anal.**23**(2013), no. 4, 1262–1277. MR**3077913**, 10.1007/s00039-013-0240-9 **[6]**Alex Iosevich and Guozhen Lu,*Sharpness results and Knapp’s homogeneity argument*, Canad. Math. Bull.**43**(2000), no. 1, 63–68. MR**1749949**, 10.4153/CMB-2000-009-7**[7]**Alex Iosevich and Svetlana Roudenko,*A universal Stein-Tomas restriction estimate for measures in three dimensions*, Additive number theory, Springer, New York, 2010, pp. 171–178. MR**2744755**, 10.1007/978-0-387-68361-4_12**[8]**Thomas Körner,*On a theorem of Saeki concerning convolution squares of singular measures*, Bull. Soc. Math. France**136**(2008), no. 3, 439–464 (English, with English and French summaries). MR**2415349****[9]**Themis Mitsis,*A Stein-Tomas restriction theorem for general measures*, Publ. Math. Debrecen**60**(2002), no. 1-2, 89–99. MR**1882456****[10]**G. Mockenhaupt,*Salem sets and restriction properties of Fourier transforms*, Geom. Funct. Anal.**10**(2000), no. 6, 1579–1587. MR**1810754**, 10.1007/PL00001662**[11]**Walter Rudin,*Trigonometric series with gaps*, J. Math. Mech.**9**(1960), 203–227. MR**0116177****[12]**Peter A. Tomas,*A restriction theorem for the Fourier transform*, Bull. Amer. Math. Soc.**81**(1975), 477–478. MR**0358216**, 10.1090/S0002-9904-1975-13790-6**[13]**Peter A. Tomas,*Restriction theorems for the Fourier transform*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR**545245****[14]**Thomas H. Wolff,*Lectures on harmonic analysis*, University Lecture Series, vol. 29, American Mathematical Society, Providence, RI, 2003. With a foreword by Charles Fefferman and preface by Izabella Łaba; Edited by Łaba and Carol Shubin. MR**2003254**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
42B10,
42B99

Retrieve articles in all journals with MSC (2010): 42B10, 42B99

Additional Information

**Xianghong Chen**

Affiliation:
Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706

Email:
xchen@math.wisc.edu

DOI:
https://doi.org/10.1090/S0002-9939-2014-12148-4

Keywords:
Fourier restriction,
convolution powers

Received by editor(s):
September 3, 2012

Received by editor(s) in revised form:
December 8, 2012

Published electronically:
July 21, 2014

Additional Notes:
The author’s research was supported in part by NSF grant 0652890.

Communicated by:
Alexander Iosevich

Article copyright:
© Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.