Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

A note on reductions of $ 2$-dimensional crystalline Galois representations


Author: Gerasimos Dousmanis
Journal: Proc. Amer. Math. Soc. 142 (2014), 3713-3729
MSC (2010): Primary 11F80, 11F85
DOI: https://doi.org/10.1090/S0002-9939-2014-12163-0
Published electronically: July 17, 2014
MathSciNet review: 3251713
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p$ be an odd prime number, $ K_{f}$ the finite unramified extension of $ \mathbb{Q} _{p}$ of degree $ f$ and $ G_{K_{f}}$ its absolute Galois group. We construct analytic families of étale $ \left ( \varphi ,\Gamma _{K_{f}}\right ) $-modules which give rise to some families of $ 2$-dimensional crystalline representations of $ G_{K_{f}}$ with length of filtration $ \geq p.$ As an application we prove that the modulo $ p$ reductions of the members of each such family (with respect to appropriately chosen Galois-stable lattices) are constant.


References [Enhancements On Off] (What's this?)

  • [1] Laurent Berger, Limites de représentations cristallines, Compos. Math. 140 (2004), no. 6, 1473-1498 (French, with English and French summaries). MR 2098398 (2006c:11138)
  • [2] L. Berger, Local constancy for the reduction $ \mathrm {mod}$ $ p$ of $ 2$-dimensional crystalline representations, Bull. Lond. Math. Soc. 44 (2012), no. 3, 451-459. MR 2966990
  • [3] L. Berger and C. Breuil, Towards a $ p$-adic Langlands programme. Summer school on $ p$-adic arithmetic geometry in Hangzhou. http://perso.ens-lyon.fr/laurent.berger/autrestextes/hangzhou.pdf
  • [4] Laurent Berger, Hanfeng Li, and Hui June Zhu, Construction of some families of 2-dimensional crystalline representations, Math. Ann. 329 (2004), no. 2, 365-377. MR 2060368 (2005k:11104), https://doi.org/10.1007/s00208-004-0529-y
  • [5] Kevin Buzzard, Fred Diamond, and Frazer Jarvis, On Serre's conjecture for mod $ \ell $ Galois representations over totally real fields, Duke Math. J. 155 (2010), no. 1, 105-161. MR 2730374 (2012k:11067), https://doi.org/10.1215/00127094-2010-052
  • [6] Pierre Colmez and Jean-Marc Fontaine, Construction des représentations $ p$-adiques semi-stables, Invent. Math. 140 (2000), no. 1, 1-43 (French). MR 1779803 (2001g:11184), https://doi.org/10.1007/s002220000042
  • [7] Gerasimos Dousmanis, Rank two filtered $ (\phi ,N)$-modules with Galois descent data and coefficients, Trans. Amer. Math. Soc. 362 (2010), no. 7, 3883-3910. MR 2601613 (2011e:11099), https://doi.org/10.1090/S0002-9947-10-05100-7
  • [8] Gerasimos Dousmanis, On reductions of families of crystalline Galois representations, Doc. Math. 15 (2010), 873-938. MR 2745686 (2012g:11104)
  • [9] J.-M. Fontaine, Le corpes des périodes $ p$-adiques. With an appendix by Pierre Colmez. Périodes $ p$-adiques (Bures-sur-Yvette, 1988), Astérisque 223 (1994), 59-111. MR 1293971 (95k:11086)
  • [10] Jean-Marc Fontaine, Représentations $ p$-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249-309 (French). MR 1106901 (92i:11125)
  • [11] T. Gee, T. Liu, and D. Savitt, The Buzzard-Diamond-Jarvis conjecture for unitary groups, J. Amer. Math. Soc. 27 (2014), no. 2, 389-435. MR 3164985
  • [12] Tong Liu, A note on lattices in semi-stable representations, Math. Ann. 346 (2010), no. 1, 117-138. MR 2558890 (2011d:11272), https://doi.org/10.1007/s00208-009-0392-y

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F80, 11F85

Retrieve articles in all journals with MSC (2010): 11F80, 11F85


Additional Information

Gerasimos Dousmanis
Affiliation: Fields Institute for Mathematics, 222 College Street, Toronto, Ontario, M5T 3J1 Canada
Address at time of publication: Athens, Greece
Email: makis.dousmanis@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2014-12163-0
Received by editor(s): April 18, 2012
Received by editor(s) in revised form: December 3, 2012
Published electronically: July 17, 2014
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society