Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Gaps between nonzero Fourier coefficients of cusp forms


Authors: Soumya Das and Satadal Ganguly
Journal: Proc. Amer. Math. Soc. 142 (2014), 3747-3755
MSC (2010): Primary 11F30; Secondary 11F11, 11N25
DOI: https://doi.org/10.1090/S0002-9939-2014-12164-2
Published electronically: July 24, 2014
MathSciNet review: 3251716
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for any even integer $ k \geq 12$, there are positive constants $ c$ and $ X_0$ that depend only on $ k$ such that for all nonzero cusp forms $ f$ of weight $ k$ for the full modular group, any interval $ (X, X+c X^{1/4})$ with $ X>X_0$ must contain an integer $ n$ with the $ n$-th Fourier coefficient of $ f$ nonzero.


References [Enhancements On Off] (What's this?)

  • [Al03] Emre Alkan, Nonvanishing of Fourier coefficients of modular forms, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1673-1680 (electronic). MR 1953571 (2003k:11068), https://doi.org/10.1090/S0002-9939-02-06758-8
  • [Al05] Emre Alkan, On the sizes of gaps in the Fourier expansion of modular forms, Canad. J. Math. 57 (2005), no. 3, 449-470. MR 2134398 (2006a:11056), https://doi.org/10.4153/CJM-2005-019-7
  • [AZ05] Emre Alkan and Alexandru Zaharescu, Nonvanishing of the Ramanujan tau function in short intervals, Int. J. Number Theory 1 (2005), no. 1, 45-51. MR 2172330 (2006e:11054), https://doi.org/10.1142/S1793042105000029
  • [AZa05] Emre Alkan and Alexandru Zaharescu, Nonvanishing of Fourier coefficients of newforms in progressions, Acta Arith. 116 (2005), no. 1, 81-98. MR 2114906 (2005i:11062), https://doi.org/10.4064/aa116-1-7
  • [AZ08] Emre Alkan and Alexandru Zaharescu, On the gaps in the Fourier expansion of cusp forms, Ramanujan J. 16 (2008), no. 1, 41-52. MR 2407238 (2009c:11061), https://doi.org/10.1007/s11139-007-9091-z
  • [BO01] Antal Balog and Ken Ono, The Chebotarev density theorem in short intervals and some questions of Serre, J. Number Theory 91 (2001), no. 2, 356-371. MR 1876282 (2003h:11145), https://doi.org/10.1006/jnth.2001.2694
  • [BC47] R. P. Bambah and S. Chowla, On numbers which can be expressed as a sum of two squares, Proc. Nat. Inst. Sci. India 13 (1947), 101-103. MR 0022879 (9,273a)
  • [Hat79] Kazuyuki Hatada, Eigenvalues of Hecke operators on $ {\rm SL}(2,\,{\bf Z})$, Math. Ann. 239 (1979), no. 1, 75-96. MR 516060 (80b:10037), https://doi.org/10.1007/BF01420494
  • [Hux03] M. N. Huxley, Exponential sums and lattice points. III, Proc. London Math. Soc. (3) 87 (2003), no. 3, 591-609. MR 2005876 (2004m:11127), https://doi.org/10.1112/S0024611503014485
  • [IK04] Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214 (2005h:11005)
  • [Koh99] Winfried Hohnen, Period polynomials and congruences for Hecke algebras [eigenvalues], Proc. Edinburgh Math. Soc. (2) 42 (1999), no. 2, 217-224. MR 1697394 (2000c:11066), https://doi.org/10.1017/S0013091500020204
  • [KRW07] Emmanuel Kowalski, Olivier Robert, and Jie Wu, Small gaps in coefficients of $ L$-functions and $ \mathfrak{B}$-free numbers in short intervals, Rev. Mat. Iberoam. 23 (2007), no. 1, 281-326. MR 2351136 (2008m:11100), https://doi.org/10.4171/RMI/496
  • [Krat82] Ekkehard Krätzel, Squarefree numbers as sums of two squares, Arch. Math. (Basel) 39 (1982), no. 1, 28-31. MR 674530 (84e:10057), https://doi.org/10.1007/BF01899241
  • [Leh47] D. H. Lehmer, The vanishing of Ramanujan's function $ \tau (n)$, Duke Math. J. 14 (1947), 429-433. MR 0021027 (9,12b)
  • [MM07] M. Ram Murty and V. Kumar Murty, Odd values of Fourier coefficients of certain modular forms, Int. J. Number Theory 3 (2007), no. 3, 455-470. MR 2352830 (2008i:11063), https://doi.org/10.1142/S1793042107001036
  • [Se81] Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323-401 (French). MR 644559 (83k:12011)
  • [Zha06] Wenguang Zhai, Square-free integers as sums of two squares, Number theory, Dev. Math., vol. 15, Springer, New York, 2006, pp. 219-227. MR 2213838 (2006k:11187), https://doi.org/10.1007/0-387-30829-6_15

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F30, 11F11, 11N25

Retrieve articles in all journals with MSC (2010): 11F30, 11F11, 11N25


Additional Information

Soumya Das
Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai – 400005, India
Email: somu@math.tifr.res.in, soumya.u2k@gmail.com

Satadal Ganguly
Affiliation: Indian Statistical Institute, Theoretical Statistics and Mathematics Unit, 203 Barrackpore Trunk Road, Kolkata 700108, India
Email: sgisical@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2014-12164-2
Keywords: Fourier coefficients of cusp forms, sums of two squares
Received by editor(s): August 13, 2012
Received by editor(s) in revised form: December 19, 2012
Published electronically: July 24, 2014
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society