Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

A note on trace scaling actions and fundamental groups of C$ ^*$-algebras


Author: Norio Nawata
Journal: Proc. Amer. Math. Soc. 142 (2014), 3903-3908
MSC (2010): Primary 46L40; Secondary 06F20
DOI: https://doi.org/10.1090/S0002-9939-2014-12346-X
Published electronically: July 21, 2014
MathSciNet review: 3251730
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the Effros-Handelman-Shen theorem and Elliott's classification theorem of AF algebras, we show that there exists a unital simple AF algebra $ A$ with unique trace such that $ A\otimes \mathbb{K}$ admits no trace scaling action of the fundamental group of $ A$.


References [Enhancements On Off] (What's this?)

  • [1] Ola Bratteli and Akitaka Kishimoto, Trace scaling automorphisms of certain stable AF algebras. II, Q. J. Math. 51 (2000), no. 2, 131-154. MR 1765786 (2001j:46092), https://doi.org/10.1093/qjmath/51.2.131
  • [2] Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita equivalence of $ C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 349-363. MR 0463928 (57 #3866)
  • [3] A. Connes, A factor of type $ {\rm II}_{1}$ with countable fundamental group, J. Operator Theory 4 (1980), no. 1, 151-153. MR 587372 (81j:46099)
  • [4] Alain Connes and Masamichi Takesaki, The flow of weights on factors of type $ {\rm III}$, Tôhoku Math. J. (2) 29 (1977), no. 4, 473-575. MR 480760 (82a:46069a), https://doi.org/10.2748/tmj/1178240493
  • [5] Giulio Della Rocca and Masamichi Takesaki, The role of groupoids in classification theory: a new approach. The UHF algebra case, Groupoids in analysis, geometry, and physics (Boulder, CO, 1999) Contemp. Math., vol. 282, Amer. Math. Soc., Providence, RI, 2001, pp. 47-65. MR 1855242 (2002i:46049), https://doi.org/10.1090/conm/282/04678
  • [6] Edward G. Effros, David E. Handelman, and Chao Liang Shen, Dimension groups and their affine representations, Amer. J. Math. 102 (1980), no. 2, 385-407. MR 564479 (83g:46061), https://doi.org/10.2307/2374244
  • [7] George A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no. 1, 29-44. MR 0397420 (53 #1279)
  • [8] George A. Elliott, David E. Evans, and Akitaka Kishimoto, Outer conjugacy classes of trace scaling automorphisms of stable UHF algebras, Math. Scand. 83 (1998), no. 1, 74-86. MR 1662080 (2000h:46076)
  • [9] David E. Evans and Akitaka Kishimoto, Trace scaling automorphisms of certain stable AF algebras, Hokkaido Math. J. 26 (1997), no. 1, 211-224. MR 1432548 (98e:46081)
  • [10] Michael J. Jacobson Jr. and Hugh C. Williams, Solving the Pell equation, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2009. MR 2466979 (2009i:11003)
  • [11] Kazunori Kodaka, Full projections, equivalence bimodules and automorphisms of stable algebras of unital $ C^*$-algebras, J. Operator Theory 37 (1997), no. 2, 357-369. MR 1452282 (98c:46149)
  • [12] Kazunori Kodaka, Picard groups of irrational rotation $ C^*$-algebras, J. London Math. Soc. (2) 56 (1997), no. 1, 179-188. MR 1462834 (98e:46071), https://doi.org/10.1112/S0024610797005243
  • [13] Kazunori Kodaka, Projections inducing automorphisms of stable UHF-algebras, Glasg. Math. J. 41 (1999), no. 3, 345-354. MR 1720450 (2000m:46124), https://doi.org/10.1017/S0017089599000336
  • [14] F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716-808. MR 0009096 (5,101a)
  • [15] Norio Nawata, Fundamental group of simple $ C^*$-algebras with unique trace III, Canad. J. Math. 64 (2012), no. 3, 573-587. MR 2962317, https://doi.org/10.4153/CJM-2011-052-0
  • [16] Norio Nawata and Yasuo Watatani, Fundamental group of simple $ C^*$-algebras with unique trace, Adv. Math. 225 (2010), no. 1, 307-318. MR 2669354 (2012h:46090), https://doi.org/10.1016/j.aim.2010.02.019
  • [17] Norio Nawata and Yasuo Watatani, Fundamental group of simple $ C^*$-algebras with unique trace II, J. Funct. Anal. 260 (2011), no. 2, 428-435. MR 2737407 (2012g:46080), https://doi.org/10.1016/j.jfa.2010.09.014
  • [18] Sorin Popa, Strong rigidity of $ \rm II_1$ factors arising from malleable actions of $ w$-rigid groups. I, Invent. Math. 165 (2006), no. 2, 369-408. MR 2231961 (2007f:46058), https://doi.org/10.1007/s00222-006-0501-4
  • [19] Sorin Popa and Stefaan Vaes, Actions of $ \mathbb{F}_\infty $ whose $ {\rm II}_1$ factors and orbit equivalence relations have prescribed fundamental group, J. Amer. Math. Soc. 23 (2010), no. 2, 383-403. MR 2601038 (2011j:46102), https://doi.org/10.1090/S0894-0347-09-00644-4
  • [20] Sorin Popa and Stefaan Vaes, On the fundamental group of $ {\rm II}_1$ factors and equivalence relations arising from group actions, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 519-541. MR 2732063 (2012j:37004)
  • [21] Florin Rădulescu, The fundamental group of the von Neumann algebra of a free group with infinitely many generators is $ {\bf R}_+\backslash 0$, J. Amer. Math. Soc. 5 (1992), no. 3, 517-532. MR 1142260 (93a:46117), https://doi.org/10.2307/2152703
  • [22] Florin Rădulescu, A one-parameter group of automorphisms of $ {\mathcal {L}}(F_\infty )\otimes B(H)$ scaling the trace, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 13, 1027-1032 (English, with French summary). MR 1168529 (93i:46111)
  • [23] Masamichi Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249-310. MR 0438149 (55 #11068)
  • [24] Dan Voiculescu, Circular and semicircular systems and free product factors, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 45-60. MR 1103585 (92e:46124)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L40, 06F20

Retrieve articles in all journals with MSC (2010): 46L40, 06F20


Additional Information

Norio Nawata
Affiliation: Department of Mathematics and Informatics, Graduate school of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan
Address at time of publication: Department of Arts and Sciences, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka, 582-8582, Japan
Email: nawata@cc.osaka-kyoiku.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2014-12346-X
Keywords: Fundamental group, trace scaling action, dimension group, Effros-Handelman-Shen theorem
Received by editor(s): January 4, 2012
Received by editor(s) in revised form: December 12, 2012
Published electronically: July 21, 2014
Additional Notes: The author is a Research Fellow of the Japan Society for the Promotion of Science.
Communicated by: Marius Junge
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society