Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Coulhon type inequalities


Authors: Joaquim Martín and Mario Milman
Journal: Proc. Amer. Math. Soc. 142 (2014), 4221-4237
MSC (2010): Primary 46E30, 26D10
DOI: https://doi.org/10.1090/S0002-9939-2014-12133-2
Published electronically: August 6, 2014
MathSciNet review: 3266991
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: T. Coulhon introduced an interesting reformulation of the usual Sobolev inequalities. We characterize Coulhon type inequalities in terms of rearrangement inequalities.


References [Enhancements On Off] (What's this?)

  • [1] Nadine Badr, Gagliardo-Nirenberg inequalities on manifolds, J. Math. Anal. Appl. 349 (2009), no. 2, 493-502. MR 2456207 (2010b:46061), https://doi.org/10.1016/j.jmaa.2008.09.013
  • [2] D. Bakry, T. Coulhon, M. Ledoux, and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), no. 4, 1033-1074. MR 1386760 (97c:46039), https://doi.org/10.1512/iumj.1995.44.2019
  • [3] F. Barthe, P. Cattiaux, and C. Roberto, Isoperimetry between exponential and Gaussian, Electron. J. Probab. 12 (2007), no. 44, 1212-1237 (electronic). MR 2346509 (2008j:60046), https://doi.org/10.1214/EJP.v12-441
  • [4] Jesús Bastero, Mario Milman, and Francisco J. Ruiz Blasco, A note on $ L(\infty ,q)$ spaces and Sobolev embeddings, Indiana Univ. Math. J. 52 (2003), no. 5, 1215-1230. MR 2010324 (2004h:46025), https://doi.org/10.1512/iumj.2003.52.2364
  • [5] Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press Inc., Boston, MA, 1988. MR 928802 (89e:46001)
  • [6] Serguei G. Bobkov and Christian Houdré, Some connections between isoperimetric and Sobolev-type inequalities, Mem. Amer. Math. Soc. 129 (1997), no. 616, viii+111. MR 1396954 (98b:46038)
  • [7] Thierry Coulhon, Espaces de Lipschitz et inégalités de Poincaré (French, with English summary), J. Funct. Anal. 136 (1996), no. 1, 81-113. MR 1375154 (97a:46040), https://doi.org/10.1006/jfan.1996.0022
  • [8] Thierry Coulhon, Dimensions at infinity for Riemannian manifolds. Potential theory and degenerate partial differential operators (Parma), Potential Anal. 4 (1995), no. 4, 335-344. MR 1354888 (96i:53040), https://doi.org/10.1007/BF01053451
  • [9] Thierry Coulhon, Heat kernel and isoperimetry on non-compact Riemannian manifolds, (Paris, 2002) Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 65-99. MR 2039952 (2005h:58037), https://doi.org/10.1090/conm/338/06071
  • [10] M. Cwikel and M. Milman, Sobolev inequalities in disguise and real interpolation, unpublished manuscript, 1996.
  • [11] A. M. Garsia and E. Rodemich, Monotonicity of certain functionals under rearrangement (English, with French summary), Ann. Inst. Fourier (Grenoble) 24 (1974), no. 2, vi, 67-116. Colloque International sur les Processus Gaussiens et les Distributions Aléatoires (Colloque Internat. du CNRS, No. 222, Strasbourg, 1973). MR 0414802 (54 #2894)
  • [12] Alexander Grigoryan, Isoperimetric inequalities and capacities on Riemannian manifolds, The Mazya anniversary collection, Vol. 1 (Rostock, 1998) Oper. Theory Adv. Appl., vol. 109, Birkhäuser, Basel, 1999, pp. 139-153. MR 1747869 (2002a:31009)
  • [13] Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160 (2000j:46063)
  • [14] Björn Jawerth and Mario Milman, Extrapolation theory with applications, Mem. Amer. Math. Soc. 89 (1991), no. 440, iv+82. MR 1046185 (91i:46092)
  • [15] Jan Kališ and Mario Milman, Symmetrization and sharp Sobolev inequalities in metric spaces, Rev. Mat. Complut. 22 (2009), no. 2, 499-515. MR 2553946 (2010i:46044)
  • [16] Michel Ledoux, Isopérimétrie et inégalités de Sobolev logarithmiques gaussiennes (French, with English summary), C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 2, 79-82. MR 929114 (88m:60013)
  • [17] Giovanni Leoni, A first course in Sobolev spaces, Graduate Studies in Mathematics, vol. 105, American Mathematical Society, Providence, RI, 2009. MR 2527916 (2010m:46049)
  • [18] Joaquim Martín and Mario Milman, Pointwise symmetrization inequalities for Sobolev functions and applications, Adv. Math. 225 (2010), no. 1, 121-199. MR 2669351 (2011m:46050), https://doi.org/10.1016/j.aim.2010.02.022
  • [19] Joaquim Martín and Mario Milman, Sobolev inequalities, rearrangements, isoperimetry and interpolation spaces, Concentration, functional inequalities and isoperimetry, Contemp. Math., vol. 545, Amer. Math. Soc., Providence, RI, 2011, pp. 167-193. MR 2858472, https://doi.org/10.1090/conm/545/10771
  • [20] Joaquim Martín and Mario Milman, Isoperimetry and symmetrization for logarithmic Sobolev inequalities, J. Funct. Anal. 256 (2009), no. 1, 149-178. MR 2475420 (2010k:46037), https://doi.org/10.1016/j.jfa.2008.09.001
  • [21] J. Martin and M. Milman, Fractional Sobolev inequalities: Symmetrization, isoperimetry and interpolation, preprint, arXiv:1205.1231.
  • [22] Joaquim Martin, Mario Milman, and Evgeniy Pustylnik, Sobolev inequalities: symmetrization and self-improvement via truncation, J. Funct. Anal. 252 (2007), no. 2, 677-695. MR 2360932 (2009a:46059), https://doi.org/10.1016/j.jfa.2007.05.017
  • [23] Vladimir Maz'ya, Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011. MR 2777530 (2012a:46056)
  • [24] S. Poornima, An embedding theorem for the Sobolev space $ W^{1,1}$ (English, with French summary), Bull. Sci. Math. (2) 107 (1983), no. 3, 253-259. MR 719267 (85b:46042)
  • [25] Jie Xiao, The $ p$-Faber-Krahn inequality noted, Around the research of Vladimir Maz'ya. I, Int. Math. Ser. (N. Y.), vol. 11, Springer, New York, 2010, pp. 373-390. MR 2723828 (2011e:35135), https://doi.org/10.1007/978-1-4419-1341-8_17

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46E30, 26D10

Retrieve articles in all journals with MSC (2010): 46E30, 26D10


Additional Information

Joaquim Martín
Affiliation: Department of Mathematics, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
Email: jmartin@mat.uab.cat

Mario Milman
Affiliation: Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431
Email: extrapol@bellsouth.net

DOI: https://doi.org/10.1090/S0002-9939-2014-12133-2
Keywords: Sobolev inequalities, modulus of continuity, symmetrization, isoperimetric inequalities, interpolation
Received by editor(s): June 8, 2012
Received by editor(s) in revised form: January 11, 2013
Published electronically: August 6, 2014
Additional Notes: The first author was supported in part by Grants MTM2010-14946, MTM-2010-16232
The work of the second author was partially supported by a grant from the Simons Foundation (#207929).
Communicated by: Richard Rochberg
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society