Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Orbit equivalent substitution dynamical systems and complexity


Authors: S. Bezuglyi and O. Karpel
Journal: Proc. Amer. Math. Soc. 142 (2014), 4155-4169
MSC (2010): Primary 37B10; Secondary 37A20, 37B05
DOI: https://doi.org/10.1090/S0002-9939-2014-12139-3
Published electronically: July 31, 2014
MathSciNet review: 3266986
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any primitive proper substitution $ \sigma $, we give explicit constructions of countably many pairwise non-isomorphic substitution dynamical systems $ \{(X_{\zeta _n}, T_{\zeta _n})\}_{n=1}^{\infty }$ such that they all are (strong) orbit equivalent to $ (X_{\sigma }, T_{\sigma })$. We show that the complexity of the substitution dynamical systems $ \{(X_{\zeta _n}, T_{\zeta _n})\}$ is the essential difference that prevents them from being isomorphic. Given a primitive (not necessarily proper) substitution $ \tau $, we find a stationary simple properly ordered Bratteli diagram with the least possible number of vertices such that the corresponding Bratteli-Vershik system is orbit equivalent to $ (X_{\tau }, T_{\tau })$.


References [Enhancements On Off] (What's this?)

  • [1] Ethan Akin, Good measures on Cantor space, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2681-2722 (electronic). MR 2139523 (2006e:37003), https://doi.org/10.1090/S0002-9947-04-03524-X
  • [2] S. Bezuglyi and O. Karpel, Homeomorphic measures on stationary Bratteli diagrams, J. Funct. Anal. 261 (2011), no. 12, 3519-3548. MR 2838033 (2012i:37001), https://doi.org/10.1016/j.jfa.2011.08.009
  • [3] S. Bezuglyi, J. Kwiatkowski, and K. Medynets, Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory Dynam. Systems 29 (2009), no. 1, 37-72. MR 2470626 (2009m:37020), https://doi.org/10.1017/S0143385708000230
  • [4] S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B. Solomyak, Invariant measures on stationary Bratteli diagrams, Ergodic Theory Dynam. Systems 30 (2010), no. 4, 973-1007. MR 2669408 (2012g:37019), https://doi.org/10.1017/S0143385709000443
  • [5] Julien Cassaigne, Special factors of sequences with linear subword complexity, Developments in language theory, II (Magdeburg, 1995) World Sci. Publ., River Edge, NJ, 1996, pp. 25-34. MR 1466182 (98e:68212)
  • [6] Julien Cassaigne, Complexité et facteurs spéciaux, Journées Montoises (Mons, 1994). Bull. Belg. Math. Soc. Simon Stevin 4 (1997), no. 1, 67-88 (French, with English and French summaries). MR 1440670 (98c:68176)
  • [7] F. Durand, B. Host, and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), no. 4, 953-993. MR 1709427 (2000i:46062), https://doi.org/10.1017/S0143385799133947
  • [8] Sébastien Ferenczi, Complexity of sequences and dynamical systems, Combinatorics and number theory (Tiruchirappalli, 1996). Discrete Math. 206 (1999), no. 1-3, 145-154. MR 1665394 (2000f:68093), https://doi.org/10.1016/S0012-365X(98)00400-2
  • [9] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002. MR 1970385 (2004c:37005)
  • [10] A. H. Forrest, $ K$-groups associated with substitution minimal systems, Israel J. Math. 98 (1997), 101-139. MR 1459849 (99c:54056), https://doi.org/10.1007/BF02937330
  • [11] Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Topological orbit equivalence and $ C^*$-crossed products, J. Reine Angew. Math. 469 (1995), 51-111. MR 1363826 (97g:46085)
  • [12] Richard H. Herman, Ian F. Putnam, and Christian F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), no. 6, 827-864. MR 1194074 (94f:46096), https://doi.org/10.1142/S0129167X92000382
  • [13] D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 283-300. MR 766106 (86c:58092), https://doi.org/10.1017/S0143385700002443
  • [14] Konstantin Medynets, Cantor aperiodic systems and Bratteli diagrams, C. R. Math. Acad. Sci. Paris 342 (2006), no. 1, 43-46 (English, with English and French summaries). MR 2193394 (2006g:37011), https://doi.org/10.1016/j.crma.2005.10.024
  • [15] Melvyn B. Nathanson, Additive number theory, Inverse problems and the geometry of sumsets. Graduate Texts in Mathematics, vol. 165, Springer-Verlag, New York, 1996. MR 1477155 (98f:11011)
  • [16] Martine Queffélec, Substitution dynamical systems--spectral analysis, 2nd ed., Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 2010. MR 2590264 (2011b:37018)
  • [17] Hisatoshi Yuasa, On the topological orbit equivalence in a class of substitution minimal systems, Tokyo J. Math. 25 (2002), no. 2, 221-240. MR 1948661 (2003k:37024), https://doi.org/10.3836/tjm/1244208850

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37B10, 37A20, 37B05

Retrieve articles in all journals with MSC (2010): 37B10, 37A20, 37B05


Additional Information

S. Bezuglyi
Affiliation: Institute for Low Temperature Physics, Kharkov, Ukraine
Email: bezuglyi@ilt.kharkov.ua

O. Karpel
Affiliation: Institute for Low Temperature Physics, Kharkov, Ukraine
Email: helen.karpel@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2014-12139-3
Received by editor(s): January 10, 2012
Received by editor(s) in revised form: September 18, 2012, and January 3, 2013
Published electronically: July 31, 2014
Communicated by: Bryna Kra
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society