Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Topological complexity of wedges and covering maps

Author: Alexander Dranishnikov
Journal: Proc. Amer. Math. Soc. 142 (2014), 4365-4376
MSC (2010): Primary 55M30; Secondary 57N65, 54F45
Published electronically: August 6, 2014
MathSciNet review: 3267004
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present some results supporting the Iwase-Sakai conjecture about coincidence of the topological complexity $ \mathrm {TC}(X)$ and monoidal topological complexity $ \mathrm {TC}^M(X)$. Using these results we provide lower and upper bounds for the topological complexity of the wedge $ X\vee Y$. We use these bounds to give a counterexample to the conjecture asserting that $ \mathrm {TC}(X')\le \mathrm {TC}(X)$ for any covering map $ p : X'\to X$.

Also we discuss a possible reduction of the monoidal topological complexity to the Lusternik-Schnirelmann category.

References [Enhancements On Off] (What's this?)

  • [BH] I. Berstein and P. J. Hilton, Category and generalized Hopf invariants, Illinois J. Math. 4 (1960), 437-451. MR 0126276 (23 #A3572)
  • [CLOT] Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857 (2004e:55001)
  • [Dr] Alexander Dranishnikov, The Lusternik-Schnirelmann category and the fundamental group, Algebr. Geom. Topol. 10 (2010), no. 2, 917-924. MR 2629770 (2011h:55007),
  • [F1] Michael Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211-221. MR 1957228 (2004c:68132),
  • [F2] Michael Farber, Topology of robot motion planning, Morse theoretic methods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 185-230. MR 2276952 (2008d:68141),
  • [F3] Michael Farber, Instabilities of robot motion, Topology Appl. 140 (2004), no. 2-3, 245-266. MR 2074919 (2005g:68166),
  • [F4] Michael Farber, Invitation to topological robotics, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2455573 (2010a:55018)
  • [FTY] Michael Farber, Serge Tabachnikov, and Sergey Yuzvinsky, Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. 34 (2003), 1853-1870. MR 1988783 (2004i:55005),
  • [GV1] J. Garcia-Calcines and L. Vandembroucq, Weak sectional category, J. Lond. Math. Soc. (2) 82 (2010), no. 3, 621-642. MR 2739059 (2012b:55005),
  • [GV2] J. M. Garcia Calcines and L. Vandembroucq, Topological complexity of the homotopy cofibre of the diagonal map, Math. Z. 274 (2013), no. 1-2, 145-165. MR 3054321
  • [IS1] Norio Iwase and Michihiro Sakai, Topological complexity is a fibrewise L-S category, Topology Appl. 157 (2010), no. 1, 10-21. MR 2556074 (2011e:55009),
  • [IS2] Norio Iwase and Michihiro Sakai, Erratum to ``Topological complexity is a fibrewise L-S category'' [Topology Appl. 157 (1) (2010) 10-21] [MR2556074], Topology Appl. 159 (2012), no. 10-11, 2810-2813. MR 2923451,
  • [J] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331-348. MR 516214 (80i:55001),
  • [Os] Phillip A. Ostrand, Dimension of metric spaces and Hilbert's problem $ 13$, Bull. Amer. Math. Soc. 71 (1965), 619-622. MR 0177391 (31 #1654)
  • [Sch] A. S. Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl. (2), 55, Amer. Math. Soc., Providence, RI, 1966, pp. 49-140.
  • [TD] Tammo tom Dieck, Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2456045 (2009f:55001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55M30, 57N65, 54F45

Retrieve articles in all journals with MSC (2010): 55M30, 57N65, 54F45

Additional Information

Alexander Dranishnikov
Affiliation: Department of Mathematics, 358 Little Hall, University of Florida, Gainesville, Florida 32611-8105

Received by editor(s): July 31, 2012
Received by editor(s) in revised form: August 11, 2012, August 12, 2012, September 25, 2012, and January 15, 2013
Published electronically: August 6, 2014
Additional Notes: This work was supported by NSF grant DMS-0904278
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society