Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Bannai-Ito polynomials and dressing chains


Authors: Maxim Derevyagin, Satoshi Tsujimoto, Luc Vinet and Alexei Zhedanov
Journal: Proc. Amer. Math. Soc. 142 (2014), 4191-4206
MSC (2010): Primary 42C05; Secondary 17B80, 33C45, 47B36
DOI: https://doi.org/10.1090/S0002-9939-2014-12165-4
Published electronically: August 1, 2014
MathSciNet review: 3266989
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials - the complementary Bannai-Ito polynomials - are shown to arise in the framework of the SDG maps.


References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson, Multiparameter eigenvalue problems. Volume I: Matrices and compact operators, Mathematics in Science and Engineering, Vol. 82, Academic Press, New York, 1972. MR 0451001 (56 #9291)
  • [2] Eiichi Bannai and Tatsuro Ito, Algebraic combinatorics. I.: Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. MR 882540 (87m:05001)
  • [3] Włodzimierz Bryc, Wojciech Matysiak, and Jacek Wesołowski, Quadratic harnesses, $ q$-commutations, and orthogonal martingale polynomials, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5449-5483. MR 2327037 (2008j:60176), https://doi.org/10.1090/S0002-9947-07-04194-3
  • [4] Włodek Bryc and Jacek Wesołowski, Askey-Wilson polynomials, quadratic harnesses and martingales, Ann. Probab. 38 (2010), no. 3, 1221-1262. MR 2674998 (2011d:60226), https://doi.org/10.1214/09-AOP503
  • [5] M. I. Bueno and F. Marcellán, Darboux transformation and perturbation of linear functionals, Linear Algebra Appl. 384 (2004), 215-242. MR 2055354 (2005b:15027), https://doi.org/10.1016/j.laa.2004.02.004
  • [6] T. S. Chihara, On kernel polynomials and related systems, Boll. Un. Mat. Ital. (3) 19 (1964), 451-459. MR 0176121 (31 #396)
  • [7] S. Corteel, R. Stanley, D. Stanton, and L. Williams, Formulae for Askey-Wilson moments and enumeration of staircase tableaux, Trans. Amer. Math. Soc. 364 (2012), no. 11, 6009-6037. MR 2946941, https://doi.org/10.1090/S0002-9947-2012-05588-7
  • [8] Philippe Delsarte and Yves V. Genin, The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Process. 34 (1986), no. 3, 470-478. MR 844658 (87f:94007), https://doi.org/10.1109/TASSP.1986.1164830
  • [9] Maxim Derevyagin, Generalized Jacobi operators in Krein spaces, J. Math. Anal. Appl. 349 (2009), no. 2, 568-582. MR 2456213 (2010d:47054), https://doi.org/10.1016/j.jmaa.2008.09.032
  • [10] Maxim Derevyagin and Vladimir Derkach, Darboux transformations of Jacobi matrices and Padé approximation, Linear Algebra Appl. 435 (2011), no. 12, 3056-3084. MR 2831597 (2012g:47089), https://doi.org/10.1016/j.laa.2011.05.035
  • [11] Maxim Derevyagin, Luc Vinet, and Alexei Zhedanov, CMV matrices and little and big $ -1$ Jacobi polynomials, Constr. Approx. 36 (2012), no. 3, 513-535. MR 2996442, https://doi.org/10.1007/s00365-012-9164-0
  • [12] Maxim S. Derevyagin and Alexei S. Zhedanov, An operator approach to multipoint Padé approximations, J. Approx. Theory 157 (2009), no. 1, 70-88. MR 2500154 (2010c:41012), https://doi.org/10.1016/j.jat.2008.07.002
  • [13] Fabian H. L. Essler and Vladimir Rittenberg, Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries, J. Phys. A 29 (1996), no. 13, 3375-3407. MR 1400161 (97b:82017), https://doi.org/10.1088/0305-4470/29/13/013
  • [14] Graham M. L. Gladwell, Inverse problems in vibration, 2nd ed., Solid Mechanics and its Applications, vol. 119, Kluwer Academic Publishers, Dordrecht, 2004. MR 2102477 (2005g:74059)
  • [15] F. Alberto Grünbaum and Luc Haine, Orthogonal polynomials satisfying differential equations: the role of the Darboux transformation, Symmetries and integrability of difference equations (Estérel, PQ, 1994), CRM Proc. Lecture Notes, vol. 9, Amer. Math. Soc., Providence, RI, 1996, pp. 143-154. MR 1416834 (97m:33003)
  • [16] Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw, Hypergeometric orthogonal polynomials and their $ q$-analogues.: With a foreword by Tom H. Koornwinder., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. MR 2656096 (2011e:33029)
  • [17] Vasyl L. Ostrovskyĭ and Yuriĭ S. Samoĭlenko, On pairs of selfadjoint operators, Sem. Sophus Lie 3 (1993), no. 2, 185-218. MR 1270175 (95b:47025)
  • [18] B. Simon, Orthogonal polynomials on the unit circle, American Mathematical Society Colloquium Publications, 54, Parts 1 and 2, American Mathematical Society, Providence, RI, 2005. MR 2105088, MR 2105089
  • [19] B. D. Sleeman, Multiparameter spectral theory in Hilbert space, J. Math. Anal. Appl. 65 (1978), no. 3, 511-530. MR 510467 (80c:47021), https://doi.org/10.1016/0022-247X(78)90160-9
  • [20] Vyacheslav Spiridonov, Luc Vinet, and Alexei Zhedanov, Spectral transformations, self-similar reductions and orthogonal polynomials, J. Phys. A 30 (1997), no. 21, 7621-7637. MR 1603364, https://doi.org/10.1088/0305-4470/30/21/030
  • [21] Vyacheslav Spiridonov and Alexei Zhedanov, Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials, Methods Appl. Anal. 2 (1995), no. 4, 369-398. MR 1376302 (97f:33030)
  • [22] Vyacheslav Spiridonov and Alexei Zhedanov, Discrete-time Volterra chain and classical orthogonal polynomials, J. Phys. A 30 (1997), no. 24, 8727-8737. MR 1619538 (98m:39049), https://doi.org/10.1088/0305-4470/30/24/031
  • [23] Wim Schoutens and Jozef L. Teugels, Lévy processes, polynomials and martingales.: Special issue in honor of Marcel F. Neuts., Comm. Statist. Stochastic Models 14 (1998), no. 1-2, 335-349. MR 1617536 (99k:60118), https://doi.org/10.1080/15326349808807475
  • [24] Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society, Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517 (51 #8724)
  • [25] Satoshi Tsujimoto, Luc Vinet, and Alexei Zhedanov, Dunkl shift operators and Bannai-Ito polynomials, Adv. Math. 229 (2012), no. 4, 2123-2158. MR 2880217, https://doi.org/10.1016/j.aim.2011.12.020
  • [26] Masaru Uchiyama, Tomohiro Sasamoto, and Miki Wadati, Asymmetric simple exclusion process with open boundaries and Askey-Wilson polynomials, J. Phys. A 37 (2004), no. 18, 4985-5002. MR 2065218 (2006d:82047), https://doi.org/10.1088/0305-4470/37/18/006
  • [27] A. P. Veselov and A. B. Shabat, A dressing chain and the spectral theory of the Schrödinger operator, Funktsional. Anal. i Prilozhen. 27 (1993), no. 2, 1-21, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 27 (1993), no. 2, 81-96. MR 1251164 (94m:58179), https://doi.org/10.1007/BF01085979
  • [28] Luc Vinet and Alexei Zhedanov, Szegö polynomials on the real axis, Integral Transform. Spec. Funct. 8 (1999), no. 1-2, 149-164. MR 1730600 (2000h:33010), https://doi.org/10.1080/10652469908819223
  • [29] Luc Vinet and Alexei Zhedanov, A `missing' family of classical orthogonal polynomials, J. Phys. A 44 (2011), no. 8, 085201, 16. MR 2770369 (2012c:42065), https://doi.org/10.1088/1751-8113/44/8/085201
  • [30] Luc Vinet and Alexei Zhedanov, A limit $ q=-1$ for the big $ q$-Jacobi polynomials, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5491-5507. MR 2931336, https://doi.org/10.1090/S0002-9947-2012-05539-5
  • [31] Luc Vinet and Alexei Zhedanov, A Bochner theorem for Dunkl polynomials, SIGMA Symmetry Integrability Geom. Methods Appl. 7 (2011), Paper 020, 9. MR 2804576 (2012f:33014), https://doi.org/10.3842/ SIGMA.2011.020
  • [32] David S. Watkins, Isospectral flows, SIAM Rev. 26 (1984), no. 3, 379-391. MR 750456 (86d:58054), https://doi.org/10.1137/ 1026075
  • [33] David S. Watkins, Some perspectives on the eigenvalue problem, SIAM Rev. 35 (1993), no. 3, 430-471. MR 1234638 (94h:65039), https://doi.org/10.1137/1035090
  • [34] D. S. Watkins and L. Elsner, Self-equivalent flows associated with the generalized eigenvalue problem, Linear Algebra Appl. 118 (1989), 107-127. MR 995370 (90g:65056), https://doi.org/10.1016/0024-3795(89)90576-4
  • [35] Alexei Zhedanov, On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval, J. Approx. Theory 94 (1998), no. 1, 73-106. MR 1637803 (2000a:42040), https://doi.org/10.1006/jath.1998.3179
  • [36] Alexei Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math. 85 (1997), no. 1, 67-86. MR 1482157 (98h:42026), https://doi.org/10.1016/S0377-0427(97)00130-1
  • [37] Alexei Zhedanov, Biorthogonal rational functions and the generalized eigenvalue problem, J. Approx. Theory 101 (1999), no. 2, 303-329. MR 1726460 (2000i:33014), https://doi.org/10.1006/jath.1999.3339

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42C05, 17B80, 33C45, 47B36

Retrieve articles in all journals with MSC (2010): 42C05, 17B80, 33C45, 47B36


Additional Information

Maxim Derevyagin
Affiliation: Department of Mathematics MA 4-2, Technische Universität Berlin, Strasse des 17. Juni 136, D-10623 Berlin, Germany
Address at time of publication: Department of Mathematics, KU Leuven, Celestijnenlaan 200B, Box 2400, BE-3001 Leuven, Belgium

Satoshi Tsujimoto
Affiliation: Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Luc Vinet
Affiliation: Centre de recherches mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal, Québec, H3C 3J7, Canada

Alexei Zhedanov
Affiliation: Donetsk Institute for Physics and Technology, 83114 Donetsk, Ukraine

DOI: https://doi.org/10.1090/S0002-9939-2014-12165-4
Keywords: Darboux transformations, dressing chains, orthogonal polynomials, Schur-Delsarte-Genin map, Bannai-Ito polynomials, quadratic algebras
Received by editor(s): January 8, 2013
Published electronically: August 1, 2014
Additional Notes: The first author acknowledges the support of the European Research Council under the European Union Seventh Programme (FP/2007-2013)/ERC grant agreement No. 259173. The first and fourth authors thank the University of Montreal for its hospitality in the course of this study
The research of the third author was supported in part by a research grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada
Communicated by: Sergei K. Suslov
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society