Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Absolutely summing multiplier operators in $ L^p (G)$ for $ p > 2$

Authors: Werner J. Ricker and Luis Rodríguez-Piazza
Journal: Proc. Amer. Math. Soc. 142 (2014), 4305-4313
MSC (2010): Primary 43A15, 47B10; Secondary 43A50, 43A77
Published electronically: August 18, 2014
MathSciNet review: 3266998
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be an infinite compact abelian group. If its dual group $ \Gamma $ contains an element of infinite order, then it is known that, for every $ 4<p<\infty $, there exists a function $ g \in L^p (G) $ whose associated convolution operator $ C_g : f \mapsto f * g $ (on $ L^p (G)$) is absolutely summing but the Fourier series of $ g$ fails to be unconditionally convergent to $ g$ in $ L^p (G)$. It is shown that the restriction on $ \Gamma $ containing an element of infinite order can be removed and also that the range of $ p$ can be extended to arbitrary $ p \in (2, \infty )$.

References [Enhancements On Off] (What's this?)

  • [1] Bernard Beauzamy and Bernard Maurey, Opérateurs de convolution $ r$-sommants sur un groupe compact abélien, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A113-A115 (French). MR 0324458 (48 #2810)
  • [2] B. Beauzamy, Geometrie des espaces de Banach et des opérateurs entre espaces de Banach, PhD Thesis, University of Paris VI, 1976.
  • [3] Andreas Defant and Klaus Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, vol. 176, North-Holland Publishing Co., Amsterdam, 1993. MR 1209438 (94e:46130)
  • [4] Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297 (96i:46001)
  • [5] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, General theory; with the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. Wiley Classics Library, John Wiley & Sons Inc., New York, 1988. MR 1009162 (90g:47001a)
  • [6] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and multiplier theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 90, Springer-Verlag, Berlin, 1977. MR 0618663 (58 #29760)
  • [7] R. E. Edwards, Fourier series. Vol. 2, 2nd ed. A modern introduction, Graduate Texts in Mathematics, vol. 85, Springer-Verlag, New York, 1982. MR 667519 (83k:42001)
  • [8] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York, 1970. MR 0262773 (41 #7378)
  • [9] Hermann König, Eigenvalue distribution of compact operators, Operator Theory: Advances and Applications, vol. 16, Birkhäuser Verlag, Basel, 1986. MR 889455 (88j:47021)
  • [10] Ronald Larsen, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften, Band 175, Springer-Verlag, New York, 1971. MR 0435738 (55 #8695)
  • [11] S. Okada, W. J. Ricker, and L. Rodríguez-Piazza, Absolutely summing convolution operators in $ L^p(G)$, Proc. Lond. Math. Soc. (3) 102 (2011), no. 5, 843-882. MR 2795726 (2012d:43001),
  • [12] S. Okada and W. J. Ricker, Integral extension of multiplier operators in $ A(G)$, Rev. Mat. Complut. 25 (2012), no. 1, 199-219. MR 2876925,
  • [13] Albrecht Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co., Amsterdam, 1980. Translated from German by the author. MR 582655 (81j:47001)
  • [14] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. MR 1144277 (93d:46001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 43A15, 47B10, 43A50, 43A77

Retrieve articles in all journals with MSC (2010): 43A15, 47B10, 43A50, 43A77

Additional Information

Werner J. Ricker
Affiliation: Mathematische-Gengrophischen Fakultät, Katholische Universität, Eichstätt- Ingolstadt, D-85072 Eichstätt, Germany

Luis Rodríguez-Piazza
Affiliation: Department Análisis Matemático and IMUS, Facultad de Matemáticas, Universidad de Sevilla, aptdo 1160, E-41080 Sevilla, Spain

Keywords: Absolutely summing operator, $p$-multiplier operator, Fourier series
Received by editor(s): January 31, 2013
Published electronically: August 18, 2014
Additional Notes: The second author was partially supported by the Spanish government and European Union (FEDER), project MTM 2012-30748
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society