Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The grade conjecture and asymptotic intersection multiplicity


Author: Jesse Beder
Journal: Proc. Amer. Math. Soc. 142 (2014), 4065-4077
MSC (2010): Primary 13A35, 13H15
DOI: https://doi.org/10.1090/S0002-9939-2014-12183-6
Published electronically: August 14, 2014
MathSciNet review: 3266978
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a finitely generated module $ M$ over a local ring $ A$ of characteristic $ p$ with $ \operatorname {pd} M < \infty $, we study the asymptotic intersection multiplicity $ \chi _\infty (M, A/\underline {x})$, where $ \underline {x} = (x_1, \ldots , x_r)$ is a system of parameters for $ M$. We show that there exists a system of parameters such that $ \chi _\infty $ is positive if and only if $ \dim \operatorname {Ext}^{d-r}(M, A) = r$, where $ d = \dim A$ and $ r = \dim M$. We use this to prove several results relating to the grade conjecture, which states that $ \operatorname {grade} M + \dim M = \dim A$ for any module $ M$ with $ \operatorname {pd} M < \infty $.


References [Enhancements On Off] (What's this?)

  • [1] David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259-268. MR 0314819 (47 #3369)
  • [2] Sankar P. Dutta, Frobenius and multiplicities, J. Algebra 85 (1983), no. 2, 424-448. MR 725094 (85f:13022), https://doi.org/10.1016/0021-8693(83)90106-0
  • [3] S. P. Dutta, Ext and Frobenius, J. Algebra 127 (1989), no. 1, 163-177. MR 1029410 (91g:13018), https://doi.org/10.1016/0021-8693(89)90281-0
  • [4] S. P. Dutta, Ext and Frobenius. II, J. Algebra 186 (1996), no. 3, 724-735. MR 1424590 (98j:13012), https://doi.org/10.1006/jabr.1996.0392
  • [5] Sankar P. Dutta, M. Hochster, and J. E. McLaughlin, Modules of finite projective dimension with negative intersection multiplicities, Invent. Math. 79 (1985), no. 2, 253-291. MR 778127 (86h:13023), https://doi.org/10.1007/BF01388973
  • [6] Hans-Bjørn Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), no. 2, 149-172. MR 535182 (83c:13008), https://doi.org/10.1016/0022-4049(79)90030-6
  • [7] O. Gabber, Non-negativity of Serre's intersection multiplicities, exposé à L'IHES, décembre 1995.
  • [8] Henri Gillet and Christophe Soulé, $ K$-théorie et nullité des multiplicités d'intersection, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 3, 71-74 (French, with English summary). MR 777736 (86k:13027)
  • [9] Melvin Hochster, The equicharacteristic case of some homological conjectures on local rings, Bull. Amer. Math. Soc. 80 (1974), 683-686. MR 0342510 (49 #7256)
  • [10] Ernst Kunz, Characterizations of regular local rings for characteristic $ p$, Amer. J. Math. 91 (1969), 772-784. MR 0252389 (40 #5609)
  • [11] Kazuhiko Kurano, On the vanishing and the positivity of intersection multiplicities over local rings with small non-complete intersection loci, Nagoya Math. J. 136 (1994), 133-155. MR 1309384 (95k:13029)
  • [12] Stephen Lichtenbaum, On the vanishing of $ {\rm Tor}$ in regular local rings, Illinois J. Math. 10 (1966), 220-226. MR 0188249 (32 #5688)
  • [13] Hideyuki Matsumura, Commutative ring theory. Translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. MR 879273 (88h:13001)
  • [14] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47-119 (French). MR 0374130 (51 #10330)
  • [15] Christian Peskine and Lucien Szpiro, Syzygies et multiplicités, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1421-1424 (French). MR 0349659 (50 #2152)
  • [16] Paul Roberts, The vanishing of intersection multiplicities of perfect complexes, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 127-130. MR 799793 (87c:13030), https://doi.org/10.1090/S0273-0979-1985-15394-7
  • [17] Paul Roberts, Le théorème d'intersection, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 7, 177-180 (French, with English summary). MR 880574 (89b:14008)
  • [18] Paul C. Roberts, The homological conjectures. Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math., vol. 2, Jones and Bartlett, Boston, MA, 1992, 121-132. MR 1165322 (93h:13018)
  • [19] Gerhard Seibert, Complexes with homology of finite length and Frobenius functors, J. Algebra 125 (1989), no. 2, 278-287. MR 1018945 (90j:13012), https://doi.org/10.1016/0021-8693(89)90164-6
  • [20] Jean-Pierre Serre, Local algebra, translated from the French by CheeWhye Chin and revised by the author, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. MR 1771925 (2001b:13001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13A35, 13H15

Retrieve articles in all journals with MSC (2010): 13A35, 13H15


Additional Information

Jesse Beder
Affiliation: Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, Illinois 61801

DOI: https://doi.org/10.1090/S0002-9939-2014-12183-6
Received by editor(s): February 7, 2012
Received by editor(s) in revised form: January 27, 2013
Published electronically: August 14, 2014
Communicated by: Irena Peeva
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society