Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Counterexamples to convexity of $ k$-intersection bodies


Author: Vladyslav Yaskin
Journal: Proc. Amer. Math. Soc. 142 (2014), 4355-4363
MSC (2010): Primary 52A20
DOI: https://doi.org/10.1090/S0002-9939-2014-12254-4
Published electronically: August 14, 2014
MathSciNet review: 3267003
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is a well-known result due to Busemann that the intersection body of an origin-symmetric convex body is also convex. Koldobsky introduced the notion of $ k$-intersection bodies. We show that the $ k$-intersection body of an origin-symmetric convex body is not necessarily convex if $ k>1$.


References [Enhancements On Off] (What's this?)

  • [B] Gautier Berck, Convexity of $ L_p$-intersection bodies, Adv. Math. 222 (2009), no. 3, 920-936. MR 2553373 (2010m:52008), https://doi.org/10.1016/j.aim.2009.05.009
  • [BZ] Jean Bourgain and Gaoyong Zhang, On a generalization of the Busemann-Petty problem, Convex geometric analysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 65-76. MR 1665578 (99m:52011)
  • [G] Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 2006. MR 2251886 (2007i:52010)
  • [GG] R. J. Gardner and A. A. Giannopoulos, $ p$-cross-section bodies, Indiana Univ. Math. J. 48 (1999), no. 2, 593-613. MR 1722809 (2000i:52002), https://doi.org/10.1512/iumj.1999.48.1689
  • [GKS] R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691-703. MR 1689343 (2001b:52011), https://doi.org/10.2307/120978
  • [GS] I. M. Gelfand and G. E. Shilov, Generalized functions. Vol. 1, Properties and operations, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977]. Translated from the Russian by Eugene Saletan. MR 0435831 (55 #8786a)
  • [H] Christoph Haberl, $ L_p$ intersection bodies, Adv. Math. 217 (2008), no. 6, 2599-2624. MR 2397461 (2009a:52001), https://doi.org/10.1016/j.aim.2007.11.013
  • [HL] Christoph Haberl and Monika Ludwig, A characterization of $ L_p$ intersection bodies, Int. Math. Res. Not. , posted on (2006), Art. ID 10548, 29. MR 2250020 (2007k:52007), https://doi.org/10.1155/IMRN/2006/10548
  • [K1] A. Koldobsky, A functional analytic approach to intersection bodies, Geom. Funct. Anal. 10 (2000), no. 6, 1507-1526. MR 1810751 (2001m:52007), https://doi.org/10.1007/PL00001659
  • [K2] Alexander Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. MR 2132704 (2006a:42007)
  • [KKZ] A. Koldobsky, H. König, and M. Zymonopoulou, The complex Busemann-Petty problem on sections of convex bodies, Adv. Math. 218 (2008), no. 2, 352-367. MR 2407938 (2009c:52016), https://doi.org/10.1016/j.aim.2007.12.006
  • [KPZ1] A. Koldobsky, G. Paouris, and M. Zymonopoulou, Isomorphic properties of intersection bodies, J. Funct. Anal. 261 (2011), no. 9, 2697-2716. MR 2826412 (2012j:52010), https://doi.org/10.1016/j.jfa.2011.07.011
  • [KPZ2] A. Koldobsky, G. Paouris, and M. Zymonopoulou, Complex intersection bodies, J. Lond. Math. Soc. (2) 88 (2013), no. 2, 538-562. MR 3106735, https://doi.org/10.1112/jlms/jdt014
  • [KY] Alexander Koldobsky and Vladyslav Yaskin, The interface between convex geometry and harmonic analysis, CBMS Regional Conference Series in Mathematics, vol. 108, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2008. MR 2365157 (2008j:52008)
  • [KYZ] Jaegil Kim, Vladyslav Yaskin, and Artem Zvavitch, The geometry of $ p$-convex intersection bodies, Adv. Math. 226 (2011), no. 6, 5320-5337. MR 2775903 (2012e:44002), https://doi.org/10.1016/j.aim.2011.01.011
  • [L] Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232-261. MR 963487 (90a:52023), https://doi.org/10.1016/0001-8708(88)90077-1
  • [LYZ] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $ L_p$ affine isoperimetric inequalities, J.  Differential Geom. 56 (2000), no. 1, 111-132. MR 1863023 (2002h:52011)
  • [LZ] Erwin Lutwak and Gaoyong Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), no. 1, 1-16. MR 1601426 (2000c:52011)
  • [M1] Emanuel Milman, Generalized intersection bodies, J. Funct. Anal. 240 (2006), no. 2, 530-567. MR 2261694 (2007h:52007), https://doi.org/10.1016/j.jfa.2006.04.004
  • [M2] Emanuel Milman, Generalized intersection bodies are not equivalent, Adv. Math. 217 (2008), no. 6, 2822-2840. MR 2397468 (2009k:52012), https://doi.org/10.1016/j.aim.2007.11.007
  • [MP] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $ n$-dimensional space, Geometric aspects of functional analysis (1987-88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64-104. MR 1008717 (90g:52003), https://doi.org/10.1007/BFb0090049
  • [S] Jared Schlieper, A note on $ k$-intersection bodies, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2081-2088 (electronic). MR 2299484 (2008d:52011), https://doi.org/10.1090/S0002-9939-07-08774-6
  • [Y] Vladyslav Yaskin, On strict inclusions in hierarchies of convex bodies, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3281-3291. MR 2407094 (2009h:52010), https://doi.org/10.1090/S0002-9939-08-09424-0
  • [YY] V. Yaskin and M. Yaskina, Centroid bodies and comparison of volumes, Indiana Univ. Math. J. 55 (2006), no. 3, 1175-1194. MR 2244603 (2007f:52008), https://doi.org/10.1512/iumj.2006.55.2761
  • [Z1] Gaoyong Zhang, Sections of convex bodies, Amer. J. Math. 118 (1996), no. 2, 319-340. MR 1385280 (97f:52015)
  • [Z2] Gaoyong Zhang, A positive solution to the Busemann-Petty problem in $ \mathbf {R}^4$, Ann. of Math. (2) 149 (1999), no. 2, 535-543. MR 1689339 (2001b:52010), https://doi.org/10.2307/120974

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52A20

Retrieve articles in all journals with MSC (2010): 52A20


Additional Information

Vladyslav Yaskin
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
Email: vladyaskin@math.ualberta.ca

DOI: https://doi.org/10.1090/S0002-9939-2014-12254-4
Keywords: Convex bodies, star bodies, $k$-intersection bodies
Received by editor(s): February 3, 2013
Published electronically: August 14, 2014
Additional Notes: This research was supported in part by NSERC
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society