Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Polynomial global product structure


Author: Andy Hammerlindl
Journal: Proc. Amer. Math. Soc. 142 (2014), 4297-4303
MSC (2010): Primary 37D20, 37D30
DOI: https://doi.org/10.1090/S0002-9939-2014-12255-6
Published electronically: August 15, 2014
MathSciNet review: 3266997
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An Anosov diffeomorphism is topologically conjugate to an infranilmanifold automorphism if and only if it has polynomial Global Product Structure.


References [Enhancements On Off] (What's this?)

  • [1] Louis Auslander, Bieberbach's theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. (2) 71 (1960), 579-590. MR 0121423 (22 #12161)
  • [2] M. I. Brin, Nonwandering points of Anosov diffeomorphisms, Dynamical systems, Vol. I--Warsaw, Astérisque, No. 49, Soc. Math. France, Paris, 1977, pp. 11-18. MR 0516499 (58 #24378)
  • [3] M. Brin, On the fundamental group of a manifold admitting a U-diffeomorphism, Soviet Math. Dokl. 19 (1978), 497-500.
  • [4] Michael Brin, Dmitri Burago, and Sergey Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn. 3 (2009), no. 1, 1-11. MR 2481329 (2010b:37084), https://doi.org/10.3934/jmd.2009.3.1
  • [5] M. Brin and A. Manning, Anosov diffeomorphisms with pinched spectrum, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin, 1981, pp. 48-53. MR 654882 (83j:58094)
  • [6] Keith Burns and Amie Wilkinson, Dynamical coherence and center bunching, Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 89-100. MR 2410949 (2010a:37055), https://doi.org/10.3934/dcds.2008.22.89
  • [7] Karel Dekimpe, What an infra-nilmanifold endomorphism really should be$ \ldots $, Topol. Methods Nonlinear Anal. 40 (2012), no. 1, 111-136. MR 3026104
  • [8] John Franks, Anosov diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 61-93. MR 0271990 (42 #6871)
  • [9] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73. MR 623534 (83b:53041)
  • [10] Ku Yong Ha, Jang Hyun Jo, Seung Won Kim, and Jong Bum Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl. 121 (2002), no. 3, 469-507. MR 1909004 (2003j:57056), https://doi.org/10.1016/S0166-8641(01)00090-6
  • [11] Andrew Scott Hammerlindl, Leaf conjugacies on the torus, PhD Thesis, University of Toronto (Canada), 2009, ProQuest LLC, Ann Arbor, MI. MR 2736718
  • [12] Andy Hammerlindl, Dynamics of quasi-isometric foliations, Nonlinearity 25 (2012), no. 6, 1585-1599. MR 2924724, https://doi.org/10.1088/0951-7715/25/6/1585
  • [13] Andy Hammerlindl, Partial hyperbolicity on 3-dimensional nilmanifolds, Discrete Contin. Dyn. Syst. 33 (2013), no. 8, 3641-3669. MR 3021374
  • [14] Kyung Bai Lee and Frank Raymond, Rigidity of almost crystallographic groups, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 73-78. MR 813102 (87d:57026), https://doi.org/10.1090/conm/044/813102
  • [15] Anthony Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96 (1974), 422-429. MR 0358865 (50 #11324)
  • [16] Kamlesh Parwani, On 3-manifolds that support partially hyperbolic diffeomorphisms, Nonlinearity 23 (2010), no. 3, 589-606. MR 2586372 (2011f:37056), https://doi.org/10.1088/0951-7715/23/3/009
  • [17] Michael Shub, Expanding maps, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 273-276. MR 0266251 (42 #1158)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37D20, 37D30

Retrieve articles in all journals with MSC (2010): 37D20, 37D30


Additional Information

Andy Hammerlindl
Affiliation: School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia

DOI: https://doi.org/10.1090/S0002-9939-2014-12255-6
Received by editor(s): October 1, 2012
Received by editor(s) in revised form: January 29, 2013
Published electronically: August 15, 2014
Communicated by: Nimish Shah
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society