Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weighted estimates for $ L_1$-vector fields


Author: Ahmed Loulit
Journal: Proc. Amer. Math. Soc. 142 (2014), 4171-4179
MSC (2010): Primary 35-XX, 32Wxx, 53Cxx
DOI: https://doi.org/10.1090/S0002-9939-2014-12257-X
Published electronically: July 31, 2014
MathSciNet review: 3266987
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the context of weighted spaces, we study some types of Bourgain-Brezis and Lanzani-Stein inequalities.


References [Enhancements On Off] (What's this?)

  • [1] Jean Bourgain and Haïm Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris 338 (2004), no. 7, 539-543 (English, with English and French summaries). MR 2057026 (2004m:26018), https://doi.org/10.1016/j.crma.2003.12.031
  • [2] Haïm Brezis, Analyse fonctionnelle, Théorie et applications. [Theory and applications]. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983 (French). MR 697382 (85a:46001)
  • [3] H.-Q. Bui, M. Paluszyński, and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), no. 3, 219-246. MR 1397492 (97c:46040)
  • [4] Bui Huy Qui, Weighted Besov and Triebel spaces: interpolation by the real method, Hiroshima Math. J. 12 (1982), no. 3, 581-605. MR 676560 (84f:46038)
  • [5] Yong-Kum Cho, Continuous characterization of the Triebel-Lizorkin spaces and Fourier multipliers, Bull. Korean Math. Soc. 47 (2010), no. 4, 839-857. MR 2681470 (2011f:42010), https://doi.org/10.4134/BKMS.2010.47.4.839
  • [6] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985. MR 0807149 (87d:42023)
  • [7] Grant Welland and Shi Ying Zhao, $ \epsilon $-families of operators in Triebel-Lizorkin and tent spaces, Canad. J. Math. 47 (1995), no. 5, 1095-1120. MR 1350651 (96h:46045), https://doi.org/10.4153/CJM-1995-057-9
  • [8] Dorothee D. Haroske and Leszek Skrzypczak, Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I, Rev. Mat. Complut. 21 (2008), no. 1, 135-177. MR 2408040 (2009g:46060)
  • [9] Loredana Lanzani and Elias M. Stein, A note on div curl inequalities, Math. Res. Lett. 12 (2005), no. 1, 57-61. MR 2122730 (2005m:58001)
  • [10] A. Loulit, Weighted norm inequalities in the Besov-Triebel-Lizorkin spaces and applications, ULB-2012, ResearchGate, 2013-2014.
  • [11] Irina Mitrea and Marius Mitrea, A remark on the regularity of the div-curl system, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1729-1733. MR 2470831 (2009j:58002), https://doi.org/10.1090/S0002-9939-08-09671-8
  • [12] Jean Van Schaftingen, Estimates for $ L^1$-vector fields, C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 181-186 (English, with English and French summaries). MR 2078071 (2005b:35018), https://doi.org/10.1016/j.crma.2004.05.013
  • [13] Jean Van Schaftingen, Limiting fractional and Lorentz space estimates of differential forms, Proc. Amer. Math. Soc. 138 (2010), no. 1, 235-240. MR 2550188 (2010i:46064), https://doi.org/10.1090/S0002-9939-09-10005-9
  • [14] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, with the assistance of Timothy S. Murphy. Monographs in Harmonic Analysis, III, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • [15] Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673 (90j:42053)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35-XX, 32Wxx, 53Cxx

Retrieve articles in all journals with MSC (2010): 35-XX, 32Wxx, 53Cxx


Additional Information

Ahmed Loulit
Affiliation: Départment de Mathématique, Research Center E. Bernheim Solvay Business School, Université Libre de Bruxelles, Av. F. D. Roosevelt 21, CP 135/01, B-1050 Bruxelles, Belgium
Email: hloulit@ulb.ac.be

DOI: https://doi.org/10.1090/S0002-9939-2014-12257-X
Keywords: Differential forms, weighted Triebel-Lizorkin spaces, exterior derivative, Sobolev-Gagliardo-Nirenberg inequality
Received by editor(s): September 3, 2012
Received by editor(s) in revised form: January 4, 2013
Published electronically: July 31, 2014
Dedicated: Dedicated to Professor Jean-Pierre Gossez on the occasion of his 70th birthday
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society